⑴ 多元线性回归问题:目前得到的数据如下图,不知能否用多元线性回归来分析呢 求教
可以做的
我经常帮别人做这类的数据分析的
⑵ spss 多元线性回归分析 帮忙分析一下下图,F、P、t、p和r方各代表什么谢谢~
F是对回归模型整体的方差检验,所以对应下面的p就是判断F检验是否显著的标准,你的p说明回归模型显著。
R方和调整的R方是对模型拟合效果的阐述,以调整后的R方更准确一些,也就是自变量对因变量的解释率为27.8%。
t就是对每个自变量是否有显著作用的检验,具体是否显著 仍然看后面的p值,若p值<0.05,说明该自变量的影响显著。
(2)多元线性回归实证分析股票扩展阅读:
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。
但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度。
更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能。
具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数。
SPSS for Windows是一个组合式软件包,它集数据整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,有利于该软件的推广应用。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。
SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程。
比如回归分析中又分线性回归分析、曲线估计、Logistic回归、Probit回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS也有专门的绘图系统,可以根据数据绘制各种图形。
参考资料:多元线性回归_网络
⑶ 怎么用多元线性回归模型进行实证分析人民币汇率变动对我国进出口贸易的影响应该选取那些变量
可以,不过要在回归模型中把其他影响GDP的因素也考虑进去。回归后通过考虑人民币汇率的系数是否显著已确定其对GDP是否有影响。最好还要考虑数据的异方差、多重共线性、时间序列造成虚假回归等问题,具体看看书吧。
⑷ 怎么用多元线性回归模型实证分析人民币汇率变动对我国进出口贸易的影
多元线性回归分析模型中估计系数的方法是:多元线性回归分析预测法多元线性回归分析预测法:是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。多元线性回归预测模型一般公式为:多元线性回归模型中最简单的是只有两个自变量(n=2)的二元线性回归模型,其一般形式为:下面以二元线性回归分析预测法为例,说明多元线性回归分析预测法的应用。二元线性回归分析预测法,是根据两个自变量与一个因变量相关关系进行预测的方法。二元线性回归方程的公式为:式中::因变量;x1,x2:两个不同自变量,即与因变量有紧密联系的影响因素。a,b1,b2:是线性回归方程的参数。a,b1,b2是通过解下列的方程组来得到。二元线性回归预测法基本原理和步骤同一元线性回归预测法没有原则的区别,大体相同。“多元线性回归分析预测法”网络链接:/view/1338395.htm
⑸ 为什么可以运用多元线性回归模型来进行研究
多元线性回归模型表示一种地理现象与另外多种地理现象的依存关系,这时另外多种地理现象共同对一种地理现象产生影响,作为影响其分布与发展的重要因素。
设变量Y与变量X1,X2,…,Xm存在着线性回归关系,它的n个样本观测值为Yj,Xj1,Xj2,…Xjm
⑹ 关于多元线性回归的显著性检验(论文中的实证分析中)
取10%的置信度还有一个变量不显著的话你要考虑下是不是存在多重共线性,异方差,自相关等的问题了。F检验是针对整个回归方程的吧,自变量的t检验也是要写出来的。就比如变量间存在多重共线性时,F值会比较大,检验也会通过,r平方也够大,但是某一个或几个自变量的系数就不会通过检验,不显著的。
⑺ 求大神帮忙用Eviews软件做多元线性回归模型的实证分析
你好,一般我用stata比较多,eviews倒是也会。是不是只需要做一般的多重共线性、自相关和异方差检验就行?
⑻ 急!!!用excel做的多元线性回归分析~
首先看方差分析中F值的Significance 10的-14次方 非常小,说明你的方程有意义。
而后看第三个表 Intercept是截距,p value是0.058,比0.05大,说明截距项可以丢掉,方程是从原点出发的;再看就业率,虽然回归出的系数是负的,但是由于p value大于0.05,所以可以认为就业率对你的因变量Y,效果可以忽略;最后看人均GDP,系数0.122,pvalue 10的-14次方,效果非常显著;最后看R square或者adjusted R square 87%,88%的样子,已经非常好了。
所以你的回归方程最终可以选定为Y=0.122×人均GDP
⑼ 多元线性回归分析的优缺点
一、多元线性回归分析的优点:
1、在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
2、在多元线性回归分析是多元回归分析中最基础、最简单的一种。
3、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果。
二、多元线性回归分析的缺点
有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。
(9)多元线性回归实证分析股票扩展阅读
社会经济现象的变化往往受到多个因素的影响,因此,一般要进行多元回归分析,我们把包括两个或两个以上自变量的回归称为多元线性回归 。
多元线性回归与一元线性回归类似,可以用最小二乘法估计模型参数,也需对模型及模型参数进行统计检验 。
选择合适的自变量是正确进行多元回归预测的前提之一,多元回归模型自变量的选择可以利用变量之间的相关矩阵来解决。
Matlab、spss、SAS等软件都是进行多元线性回归的常用软件。
⑽ 硕士毕业论文中做多元线性回归的实证分析,该怎么做
多元线性回归的实证分析
明白可以的