当前位置:首页 » 分析预测 » 傅立叶级数分析股票
扩展阅读
怎样买洁柔股票 2024-10-03 10:32:05
广发基金股票型 2024-10-03 10:16:24

傅立叶级数分析股票

发布时间: 2021-05-20 04:48:02

1. 傅里叶级数与傅里叶变换异同点

一、相同点

傅里叶级数和傅里叶变换都源自于傅里叶原理得出;傅里叶变换是从傅里叶级数推演而来的,傅里叶级数是所有周期函数都可以分解成一系列的正交三角函数,这样,周期函数对应的傅里叶级数即是它的频谱函数。

二、不同点

1、本质不同

傅里叶变换是完全的频域分析,而傅里叶级数是周期信号的另一种时域的表达方式,也就是正交级数,它是不同的频率的波形的叠加。

2、适用范围不同

傅里叶级数适用于对周期性现象做数学上的分析,傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。

3、周期性不同

傅里叶级数是一种周期变换,傅里叶变换是一种非周期变换。傅里叶级数是以三角函数为基对周期信号的无穷级数展开,如果把周期函数的周期取作无穷大,对傅里叶级数取极限即得到傅里叶变换。

2. 傅里叶级数起源

【学者傅立叶】
[编辑本段]
【简介】傅立叶(Fourier,Jean Baptiste Joseph,1768-1830)法国数学家、物理学家。

【履历】1768年3月21日生于欧塞尔, 1830年5月16日卒于巴黎。9岁父母双亡, 被当地教堂收养。12岁由一主教送入地方军事学校读书。17岁(1785)回乡教数学,1794到巴 黎,成为高等师范学校的首批学员, 次年到巴黎综合工科学校执教。1798年随拿破仑远征埃及时任军中文书和埃及研究院秘书,1801年回国后任伊泽尔 省地方长官。1817年当选为科学院院 士,1822年任该院终身秘书,后又任法兰西学院终身秘书和理工科大学校务委员会主席。

【主要贡献】
■数学方面
主要贡献是在研究热的传播时创立了一套数学理论。1807年向巴黎科学院呈交《热的传播》论文, 推导出著名的热传导方程 ,并在求解该方程时发现解函数可以由三角函数构成的级数形式表示,从而提出任一函数都可以展成三角函数的无穷级数。傅立叶级数(即三角级数)、傅立叶分析等理论均由此创始。
其他贡献有:最早使用定积分符号,改进了代数方程符号法则的证法和实根个数的判别法等。
傅里叶变换的基本思想首先由傅里叶提出,所以以其名字来命名以示纪念。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的" 条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。
在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇:
1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;
2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;
3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)).
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。

■物理方面
他是傅立叶定律的创始人,1822 年在代表作《热的分析理论》中解决了热在非均匀加热的固体中分布传播问题,成为分析学在物理中应用的最早例证之一,对19 世纪的理论物理学的发展产生深远影响。
◎傅立叶定律相关简介
英文名称:Fourier law
傅立叶定律是传热学中的一个基本定律。可以用来计算热量的传导量。
相关的公式为:Φ=-λA(dt/dx),q=-λ(dt/dx)
其中Φ为导热量,单位为W,λ为导热系数,A为传热面积,单位为m^2,t为温度,单位为K,x为在导热面上的坐标,单位为m,q为热流密度,单位为W/m^2 ,负号表示传热方向与温度梯度方向相反,λ表征材料导热性能的物性参数(λ越大,导热性能越好)

3. 傅里叶级数

你好:
傅里叶级数是这样定义的:
法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的)
后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。

4. 怎么求傅里叶级数的和函数

一. 傅里叶级数的三角函数形式
设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f ,ω1.由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数.即
其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量.A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等.基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波.式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加.
上式有可改写为如下形式,即
当A0,An,ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式.
把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析.工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用.
从式(10-2-3)中看出,将n换成(-n)后即可证明有
a-n=an
b-n=-bn
A-n=An
ψ-n=-ψn
即an和An是离散变量n的偶函数,bn和ψn是n的奇函数.
二. 傅里叶级数的复指数形式
将式(10-2-2)改写为
可见 与 互为共轭复数.代入式(10-2-4)有
上式即为傅里叶级数的复指数形式.
下面对和上式的物理意义予以说明:
由式(10-2-5)得的模和辐角分别为
可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅.
的求法如下:将式(10-2-3a,b)代入式(10-2-5)有
上式即为从已知的f(t)求的公式.这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即
即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数.
在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1).但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量.即
引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便.

5. 常用傅里叶级数展开式怎么证明

证明:根据傅里叶级数的定义,若将f(x)展开成余弦级数,则f(x)=(a0)/2+∑ancosnx,其中,an=(2/π)∫(0,π)f(x)cosnxdx,n=0,1,2,…,∞。本题中,f(x)=sinx,则an=(2/π)∫(0,π)sinxcosnxdx。 ∴a0=(2/π)∫(0,π)sinxdx=(-2/π)cosx丨(x=0,π)=4/π,a1=∫(0,π)sinxcosxdx=0,而n≠0,1时,∫(0,π)sinxcosnxdx=(1/2)∫(0,π)[sin(n+1)x-sin(n-1)x]dx=(1/2){1/(n+1)-[(-1)^(n+1)]-1/(n-1)+[(-1)^(n+1)]/(n+1)}。显然,n=2k+1时,an=0、n=2k时,an=(-4/π)/[(2k+1)(2k-1)](k=1,2,……∞), ∴sinx=2/π+∑a2kcos2kx=2/π-(4/π)∑(cos2kx)/[(2k+1)(2k-1)],即∑(cos2nx)/[(2n+1)(2n-1)]=1/2-(π/4)sinx(n=1,2,……,∞)。供参考。

6. 傅里叶级数展开的实际意义

傅里叶级数展开的实际意义:

傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。
傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:
1) 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;
2) 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;
3) 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
4) 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;5. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
参考链接:
傅里叶级数展开的实际意义_网络文库
http://wenku..com/link?url=Dtzm3lpZCOiu6iRxLeW2sK0_wJcXlk9qvIxBC

7. 傅里叶级数 求解

这个是最简单的傅立叶展开题,这个题目的意思是周期是2派,然后有公式的,把对应的a0,an和bn算出来就可以了,

8. 什么是傅里叶级数

一. 傅里叶级数的三角函数形式
设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即

其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。
上式有可改写为如下形式,即

当A0,An, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。
把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。
从式(10-2-3)中看出,将n换成(-n)后即可证明有
a-n=an
b-n=-bn
A-n=An
ψ-n=-ψn
即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。

二. 傅里叶级数的复指数形式
将式(10-2-2)改写为

可见 与 互为共轭复数。代入式(10-2-4)有

上式即为傅里叶级数的复指数形式。
下面对和上式的物理意义予以说明:
由式(10-2-5)得的模和辐角分别为

可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。
的求法如下:将式(10-2-3a,b)代入式(10-2-5)有

上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即

即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。

在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即

引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。

9. 求简单的傅里叶级数,数学分析。。。

上册:极限,等价无穷小,三种间断点,上下确界,聚点,导数,微分中值定理,洛必达法则,泰勒公式极其展开式,不定积分与定积分的计算方法,下册:幂级数,一致收敛,偏导数与全微分,隐函数的条件极值,无穷积分与瑕积分的收敛与发散,含参变量积分,二重积分,第二型曲线积分,差不多这么多,具体还要看老师偏向哪一面

10. 电子中常讲到傅里叶级数,这个公式是什么可以详细的讲讲吗

一. 傅里叶级数的三角函数形式
设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即

其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。
上式有可改写为如下形式,即

当A0,An, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。
把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。
从式(10-2-3)中看出,将n换成(-n)后即可证明有
a-n=an
b-n=-bn
A-n=An
ψ-n=-ψn
即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。

二. 傅里叶级数的复指数形式
将式(10-2-2)改写为

可见 与 互为共轭复数。代入式(10-2-4)有

上式即为傅里叶级数的复指数形式。
下面对和上式的物理意义予以说明:
由式(10-2-5)得的模和辐角分别为

可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。
的求法如下:将式(10-2-3a,b)代入式(10-2-5)有

上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即

即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。

在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即

引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。

自己看:http://www1.gdou.e.cn/xxxy/dljc/ml.files/dshz/dshzdej001.files/fold1/dshzdej001.htm
回答者:日向あ舞 - 秀才 二级