当前位置:首页 » 分析预测 » python聚类分析股票
扩展阅读
晚上十点买股票 2024-10-13 19:29:02
现在买贵州茅台股票好吗 2024-10-13 17:19:37

python聚类分析股票

发布时间: 2021-05-02 12:16:54

⑴ python对数据进行聚类怎么显示数据分类

将其整理成数据集为:
[ [1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"] ]
算法过程:

1、计算原始的信息熵。
2、依次计算数据集中每个样本的每个特征的信息熵。
3、比较不同特征信息熵的大小,选出信息熵最大的特征值并输出。
运行结果:
col : 0 curInfoGain : 2.37744375108 baseInfoGain : 0.0
col : 1 curInfoGain : 1.37744375108 baseInfoGain : 2.37744375108
bestInfoGain : 2.37744375108 bestFeature: 0
结果分析
说明按照第一列,即有无喉结这个特征来进行分类的效果更好。
思考:
1、能否利用决策树算法,将样本最终的分类结果进行输出?如样本1,2,3属于男性,4属于女性。

2、示例程序生成的决策树只有一层,当特征量增多的时候,如何生成具有多层结构的决策树?
3、如何评判分类结果的好坏?
在下一篇文章中,我将主要对以上三个问题进行分析和解答。如果您也感兴趣,欢迎您订阅我的文章,也可以在下方进行评论,如果有疑问或认为不对的地方,您也可以留言,我将积极与您进行解答。
完整代码如下:
from math import log
"""
计算信息熵
"""
def calcEntropy(dataset):
diclabel = {} ## 标签字典,用于记录每个分类标签出现的次数
for record in dataset:
label = record[-1]
if label not in diclabel.keys():
diclabel[label] = 0
diclabel[label] += 1
### 计算熵
entropy = 0.0
cnt = len(dataset)
for label in diclabel.keys():
prob = float(1.0 * diclabel[label]/cnt)
entropy -= prob * log(prob,2)
return entropy
def initDataSet():
dataset = [[1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"]]
label = ["male","female"]
return dataset,label
#### 拆分dataset ,根据指定的过滤选项值,去掉指定的列形成一个新的数据集
def splitDataset(dataset , col, value):
retset = [] ## 拆分后的数据集
for record in dataset:
if record[col] == value :
recedFeatVec = record[:col]
recedFeatVec.extend(record[col+1:]) ### 将指定的列剔除
retset.append(recedFeatVec) ### 将新形成的特征值列表追加到返回的列表中
return retset
### 找出信息熵增益最大的特征值
### 参数:
### dataset : 原始的数据集
def findBestFeature(dataset):
numFeatures = len(dataset[0]) - 1 ### 特征值的个数
baseEntropy = calcEntropy(dataset) ### 计算原始数据集的熵
baseInfoGain = 0.0 ### 初始信息增益
bestFeature = -1 ### 初始的最优分类特征值索引
### 计算每个特征值的熵
for col in range(numFeatures):
features = [record[col] for record in dataset] ### 提取每一列的特征向量 如此处col= 0 ,则features = [1,1,0,0]
uniqueFeat = set(features)
curInfoGain = 0 ### 根据每一列进行拆分,所获得的信息增益
for featVal in uniqueFeat:
subDataset = splitDataset(dataset,col,featVal) ### 根据col列的featVal特征值来对数据集进行划分
prob = 1.0 * len(subDataset)/numFeatures ### 计算子特征数据集所占比例
curInfoGain += prob * calcEntropy(subDataset) ### 计算col列的特征值featVal所产生的信息增益
# print "col : " ,col , " featVal : " , featVal , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
print "col : " ,col , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
if curInfoGain > baseInfoGain:
baseInfoGain = curInfoGain
bestFeature = col
return baseInfoGain,bestFeature ### 输出最大的信息增益,以获得该增益的列
dataset,label = initDataSet()
infogain , bestFeature = findBestFeature(dataset)
print "bestInfoGain :" , infogain, " bestFeature:",bestFeature

⑵ python代码如何应用系统聚类和K-means聚类法进行聚类分析 然后选择变量,建立适当的模型

-Means聚类算法
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。

随机选择k个点作为初始的聚类中心。
对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
对每个簇,计算所有点的均值作为新的聚类中心。
重复2,3直到聚类中心不再发生改变

Figure 1

K-means的应用
数据介绍:
现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。

实验目的:
通过聚类,了解1999年各个省份的消费水平在国内的情况。

技术路线:
sklearn.cluster.Kmeans

数据实例:

⑶ python 怎么可视化聚类的结果

、K均值聚类
K-Means算法思想简单,效果却很好,是最有名的聚类算法。聚类算法的步骤如下:
1:初始化K个样本作为初始聚类中心;
2:计算每个样本点到K个中心的距离,选择最近的中心作为其分类,直到所有样本点分类完毕;
3:分别计算K个类中所有样本的质心,作为新的中心点,完成一轮迭代。
通常的迭代结束条件为新的质心与之前的质心偏移值小于一

⑷ 怎么用python进行聚类分析

、K均值聚类K-Means算法思想简单,效果却很好,是最有名的聚类算法。聚类算法的步骤如下:1:初始化K个样本作为初始聚类中心;2:计算每个样本点到K个中心的距离,选择最近的中心作为其分类,直到所有样本点分类完毕;3:分别计算K个类中所有样本的质心,作为新的中心点,完成一轮迭代。通常的迭代结束条件为新的质心与之前的质心偏移值小于一

⑸ 如何用Python对人员轨迹聚类

把你的 xy 变换成 onehot编码 ,这样的话 聚类算法就都可以兼容了,
KMeans, DBScan, 层次聚类,等等都是可以的

⑹ 用python K值聚类识别图片主要颜色的程序,算法python代码已经有了

难得被人求助一次, 这个必须回答一下. 不过你的需求确实没有写得太清楚. 根据k值算法出来的是主要颜色有三个, 所以我把三个颜色都打在记事本里了. 如果和你的需求有误, 请自行解决吧.


另外这里需要用到numpy的库, 希望你装了, 如果没装, 这个直接安装也比较麻烦, 可以看一下portablepython的绿色版。


代码如下:


#-*-coding:utf-8-*-
importImage
importrandom
importnumpy
classCluster(object):
def__init__(self):
self.pixels=[]
self.centroid=None
defaddPoint(self,pixel):
self.pixels.append(pixel)
defsetNewCentroid(self):
R=[colour[0]forcolourinself.pixels]
G=[colour[1]forcolourinself.pixels]
B=[colour[2]forcolourinself.pixels]
R=sum(R)/len(R)
G=sum(G)/len(G)
B=sum(B)/len(B)
self.centroid=(R,G,B)
self.pixels=[]
returnself.centroid
classKmeans(object):
def__init__(self,k=3,max_iterations=5,min_distance=5.0,size=200):
self.k=k
self.max_iterations=max_iterations
self.min_distance=min_distance
self.size=(size,size)
defrun(self,image):
self.image=image
self.image.thumbnail(self.size)
self.pixels=numpy.array(image.getdata(),dtype=numpy.uint8)
self.clusters=[Noneforiinrange(self.k)]
self.oldClusters=None
randomPixels=random.sample(self.pixels,self.k)
foridxinrange(self.k):
self.clusters[idx]=Cluster()
self.clusters[idx].centroid=randomPixels[idx]
iterations=0
whileself.shouldExit(iterations)isFalse:
self.oldClusters=[cluster.centroidforclusterinself.clusters]
printiterations
forpixelinself.pixels:
self.assignClusters(pixel)
forclusterinself.clusters:
cluster.setNewCentroid()
iterations+=1
return[cluster.centroidforclusterinself.clusters]
defassignClusters(self,pixel):
shortest=float('Inf')
forclusterinself.clusters:
distance=self.calcDistance(cluster.centroid,pixel)
ifdistance<shortest:
shortest=distance
nearest=cluster
nearest.addPoint(pixel)
defcalcDistance(self,a,b):
result=numpy.sqrt(sum((a-b)**2))
returnresult
defshouldExit(self,iterations):
ifself.oldClustersisNone:
returnFalse
foridxinrange(self.k):
dist=self.calcDistance(
numpy.array(self.clusters[idx].centroid),
numpy.array(self.oldClusters[idx])
)
ifdist<self.min_distance:
returnTrue
ifiterations<=self.max_iterations:
returnFalse
returnTrue
#############################################
#
defshowImage(self):
self.image.show()
defshowCentroidColours(self):
forclusterinself.clusters:
image=Image.new("RGB",(200,200),cluster.centroid)
image.show()
defshowClustering(self):
localPixels=[None]*len(self.image.getdata())
foridx,pixelinenumerate(self.pixels):
shortest=float('Inf')
forclusterinself.clusters:
distance=self.calcDistance(
cluster.centroid,
pixel
)
ifdistance<shortest:
shortest=distance
nearest=cluster
localPixels[idx]=nearest.centroid
w,h=self.image.size
localPixels=numpy.asarray(localPixels)
.astype('uint8')
.reshape((h,w,3))
colourMap=Image.fromarray(localPixels)
colourMap.show()

if__name__=="__main__":
fromPILimportImage
importos

k_image=Kmeans()
path=r'.\pics\'
fp=open('file_color.txt','w')
forfilenameinos.listdir(path):
printpath+filename
try:
color=k_image.run(Image.open(path+filename))
fp.write('Thecolorof'+filename+'is'+str(color)+' ')
except:
print"Thisfileformatisnotsupport"
fp.close()

⑺ python数据挖掘工具包有什么优缺点

【导读】python数据挖掘工具包就是scikit-learn,scikit-learn是一个基于NumPy, SciPy,
Matplotlib的开源机器学习工具包,主要涵盖分类,回归和聚类算法,例如SVM,
逻辑回归,朴素贝叶斯,随机森林,k-means等算法,代码和文档都非常不错,在许多Python项目中都有应用。

优点:

1、文档齐全:官方文档齐全,更新及时。

2、接口易用:针对所有算法提供了一致的接口调用规则,不管是KNN、K-Means还是PCA.

3、算法全面:涵盖主流机器学习任务的算法,包括回归算法、分类算法、聚类分析、数据降维处理等。

缺点:

缺点是scikit-learn不支持分布式计算,不适合用来处理超大型数据。

Pandas是一个强大的时间序列数据处理工具包,Pandas是基于Numpy构建的,比Numpy的使用更简单。最初开发的目的是为了分析财经数据,现在已经广泛应用在Python数据分析领域中。Pandas,最基础的数据结构是Series,用它来表达一行数据,可以理解为一维的数组。另一个关键的数据结构为DataFrame,它表示的是二维数组

Pandas是基于NumPy和Matplotlib开发的,主要用于数据分析和数据可视化,它的数据结构DataFrame和R语言里的data.frame很像,特别是对于时间序列数据有自己的一套分析机制。有一本书《Python
for Data Analysis》,作者是Pandas的主力开发,依次介绍了iPython, NumPy,
Pandas里的相关功能,数据可视化,数据清洗和加工,时间数据处理等,案例包括金融股票数据挖掘等,相当不错。

Mlpy是基于NumPy/SciPy的Python机器学习模块,它是Cython的扩展应用。

关于python数据挖掘工具包的优缺点,就给大家介绍到这里了,scikit-learn提供了一致的调用接口。它基于Numpy和scipy等Python数值计算库,提供了高效的算法实现,所以想要学习python,以上的内容得学会。

⑻ 如何用Python和机器学习炒股赚钱

相信很多人都想过让人工智能来帮你赚钱,但到底该如何做呢?瑞士日内瓦的一位金融数据顾问 Gaëtan Rickter 近日发表文章介绍了他利用 Python 和机器学习来帮助炒股的经验,其最终成果的收益率跑赢了长期处于牛市的标准普尔 500 指数。虽然这篇文章并没有将他的方法完全彻底公开,但已公开的内容或许能给我们带来如何用人工智能炒股的启迪。

我终于跑赢了标准普尔 500 指数 10 个百分点!听起来可能不是很多,但是当我们处理的是大量流动性很高的资本时,对冲基金的利润就相当可观。更激进的做法还能得到更高的回报。

这一切都始于我阅读了 Gur Huberman 的一篇题为《Contagious Speculation and a Cure for Cancer: A Non-Event that Made Stock Prices Soar》的论文。该研究描述了一件发生在 1998 年的涉及到一家上市公司 EntreMed(当时股票代码是 ENMD)的事件:

「星期天《纽约时报》上发表的一篇关于癌症治疗新药开发潜力的文章导致 EntreMed 的股价从周五收盘时的 12.063 飙升至 85,在周一收盘时接近 52。在接下来的三周,它的收盘价都在 30 以上。这股投资热情也让其它生物科技股得到了溢价。但是,这个癌症研究方面的可能突破在至少五个月前就已经被 Nature 期刊和各种流行的报纸报道过了,其中甚至包括《泰晤士报》!因此,仅仅是热情的公众关注就能引发股价的持续上涨,即便实际上并没有出现真正的新信息。」

在研究者给出的许多有见地的观察中,其中有一个总结很突出:

「(股价)运动可能会集中于有一些共同之处的股票上,但这些共同之处不一定要是经济基础。」

我就想,能不能基于通常所用的指标之外的其它指标来划分股票。我开始在数据库里面挖掘,几周之后我发现了一个,其包含了一个分数,描述了股票和元素周期表中的元素之间的「已知和隐藏关系」的强度。

我有计算基因组学的背景,这让我想起了基因和它们的细胞信号网络之间的关系是如何地不为人所知。但是,当我们分析数据时,我们又会开始看到我们之前可能无法预测的新关系和相关性。

如果你使用机器学习,就可能在具有已知和隐藏关系的上市公司的寄生、共生和共情关系之上抢占先机,这是很有趣而且可以盈利的。最后,一个人的盈利能力似乎完全关乎他在生成这些类别的数据时想出特征标签(即概念(concept))的强大组合的能力。

我在这类模型上的下一次迭代应该会包含一个用于自动生成特征组合或独特列表的单独算法。也许会基于近乎实时的事件,这可能会影响那些具有只有配备了无监督学习算法的人类才能预测的隐藏关系的股票组。

⑼ python怎么做聚类树状图

#-*-coding:utf-8-*-importmathimportpylabaspl#数据集:每三个是一组分别是西瓜的编号,密度,含糖量data="""
1,0.697,0.46,2,0.774,0.376,3,0.634,0.264,4,0.608,0.318,5,0.556,0.215,
6,0.403,0.237,7,0.481,0.149,8,0.437,0.211,9,0.666,0.091,10,0.243,0.267,
11,0.245,0.057,12,0.343,0.099,13,0.639,0.161,14,0.657,0.198,15,0.36,0.37,
16,0.593,0.042,17,0.719,0.103,18,0.359,0.188,19,0.339,0.241,20,0.282,0.257,
21,0.748,0.232,22,0.714,0.346,23,0.483,0.312,24,0.478,0.437,25,0.525,0.369,
26,0.751,0.489,27,0.532,0.472,28,0.473,0.376,29,0.725,0.445,30,0.446,0.459"""#数据处理dataset是30个样本(密度,含糖量)的列表a=data.split(',')
dataset=[(float(a[i]),float(a[i+1]))foriinrange(1,len(a)-1,3)]#计算欧几里得距离,a,b分别为两个元组defdist(a,b):
returnmath.sqrt(math.pow(a[0]-b[0],2)+math.pow(a[1]-b[1],2))#dist_mindefdist_min(Ci,Cj):
returnmin(dist(i,j)foriinCiforjinCj)#dist_maxdefdist_max(Ci,Cj):
returnmax(dist(i,j)foriinCiforjinCj)#dist_avgdefdist_avg(Ci,Cj):
returnsum(dist(i,j)foriinCiforjinCj)/(len(Ci)*len(Cj))#找到距离最小的下标deffind_Min(M):
min=1000
x=0;y=0
foriinrange(len(M)):forjinrange(len(M[i])):ifi!=jandM[i][j]<min:
min=M[i][j];x=i;y=jreturn(x,y,min)#算法模型:defAGNES(dataset,dist,k):
#初始化C和M
C=[];M=[]foriindataset:
Ci=[]
Ci.append(i)
C.append(Ci)foriinC:
Mi=[]forjinC:
Mi.append(dist(i,j))
M.append(Mi)
q=len(dataset)#合并更新
whileq>k:
x,y,min=find_Min(M)
C[x].extend(C[y])
C.remove(C[y])
M=[]foriinC:
Mi=[]forjinC:
Mi.append(dist(i,j))
M.append(Mi)
q-=1
returnC#画图defdraw(C):
colValue=['r','y','g','b','c','k','m']foriinrange(len(C)):
coo_X=[]#x坐标列表
coo_Y=[]#y坐标列表
forjinrange(len(C[i])):
coo_X.append(C[i][j][0])
coo_Y.append(C[i][j][1])
pl.scatter(coo_X,coo_Y,marker='x',color=colValue[i%len(colValue)],label=i)

pl.legend(loc='upperright')
pl.show()

C=AGNES(dataset,dist_avg,3)
draw(C)

⑽ python 数据在进行k-means聚类时遇到np.nan, 还可以进行数据聚类吗

遇到nan建议在数据预处理阶段用fillna进行填充,要不然数据不干净容易导致聚类结果不理想