当前位置:首页 » 分析预测 » 对股票做主成分分析法
扩展阅读
陕汽股票代码查询 2025-02-09 10:12:14
大康股份股票行情 2025-02-09 10:12:08
恐龙化石价格 2025-02-09 09:56:41

对股票做主成分分析法

发布时间: 2022-07-21 16:37:38

❶ 什么是主成分分析主成分分析的步骤有哪些

主成分分析是指通过将一组可能存在相关性的变量转换城一组线性不相关的变量,转换后的这组变量叫主成分。

主成分分析步骤:1、对原始数据标准化,2、计算相关系数,3、计算特征,4、确定主成分,5、合成主成分。

主成分分析的原理是设法将原来变量重新组合成一组新的相互无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。

(1)对股票做主成分分析法扩展阅读

主成分分析的主要作用

1.主成分分析能降低所研究的数据空间的维数。

2.有时可通过因子负荷aij的结论,弄清X变量间的某些关系。

3.多维数据的一种图形表示方法。

4.由主成分分析法构造回归模型。即把各主成分作为新自变量代替原来自变量x做回归分析。

5.用主成分分析筛选回归变量。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Va(rF1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

❷ 如何进行主成分分析

样品常用的分离与纯化手段

1. 化学分离法
蒸馏与分馏
分离沸点与挥发度相差较大组分的有效方法。有常压蒸馏,减压蒸馏,水蒸气蒸馏。适用于混合液体及液固的分离。
萃取
利用物质在不同溶剂中溶解度的不同和分配系数的差异,使物质达到相互分离的方法。适用于液固,液液的分离。
提取
利用不同的溶剂,从固体样品的基体中,使某种组分得到分离和浓缩。主要利用索氏提取器。如高聚物与填料,高聚物材料中微量助剂的提取与浓缩处理。缺点:①易引起热不稳定的组分变质②溶剂中的杂质也被浓缩③溶剂用量大
结晶与沉淀(溶解沉淀法)
利用样品中各组分在溶剂中的溶解度差异,使某些组分从浓溶液中生成结晶分离出来,是纯化物质的一种有效的方法。适用与高聚物的分离。
过滤与膜分离
过滤是分离液-固非均一体系常用的分离方法。适用于>1μm的颗粒。
膜分离适用于分离<1μm的胶体颗粒。分为固体高分子膜,阳离子膜,阴离子膜。
灰化,酸化,微波消解—用于无机物的分离。

2. 色谱分离法:
柱色谱法—分离有机化合物的有效手段。分为:
硅胶填充柱—适用于分离大多数弱极性,中等极性和较强极性的化合物。
氧化铝填充柱—适用于分离非极性,弱极性化合物
聚酰胺填充柱—可用于染料,表面活性剂的分离。
阳离子交换柱—分离阳离子,适用于阳离子表面活性剂。
阴离子交换柱—分离阴离子,适用于阴离子表面活性剂。
凝胶色谱法
分为:
凝胶过滤色谱(GFC)—用于分离水溶性大分子。
凝胶渗透色谱(GPC)—用于有机溶剂中可溶的高聚物分子量分布分析及分离。
哲博检测与浙大合作拥有丰富的检测分析测试经验,可提供各类物质的全成分分析,为工业生产的配方还原改性提供可靠技术支持。
联系方式见我网络账号。

❸ 主成分分析法 评价值能反映什么

主成分分析法和层次分析法异同 1.基于相关性分析的指标筛选原理两个指标之间的相关系数,反映了两个指标之间的相关性。相关系数越大,两个指标反映的信息相关性就越高。而为了使评价指标体系简洁有效,就需要避免指标反映信息重复。通过计算同一准则层中各个评价指标之间的相关系数,删除相关系数较大的指标,避免了评价指标所反映的信息重复。通过相关性分析,简化了指标体系,保证了指标体系的简洁有效。 2.基于主成分分析的指标筛选原理(1)因子载荷的原理通过对剩余多个指标进行主成分分析,得到每个指标的因子载荷。因子载荷的绝对值小于等于1,而绝对值越是趋向于1,指标对评价结果越重要。(2)基于主成分分析的指标筛选原理因子载荷反映指标对评价结果的影响程度,因子载荷绝对值越大表示指标对评价结果越重要,越应该保留;反之,越应该删除。通过对相关性分析筛选后的指标进行主成分分析,得到每个指标的因子载荷,从而删除因子载荷小的指标,保证筛选出重要的指标。 3.相关性分析和主成分分析相同点一是,基于相关性分析的指标筛选和基于主成分分析的指标筛选,均是在准则层内进行指标的筛选处理,准则层之间不进行筛选。这种做法的原因是,通过人为地划分不同准则层,反映评价事物不同层面的状况,避免误删反应信息不同的重要指标。二是,基于相关性分析的指标筛选和基于主成分分析的指标筛选的思路,均是筛选出少量具有代表性的指标。 4.相关性分析和主成分分析不同点一是,两次筛选的目的不同:基于相关性分析的指标筛选的目的是删除反应信息冗余的评价指标。基于主成分分析的指标筛选的目的是删除对评价结果影响较小的评价指标。二是,两次筛选的作用不同:基于相关性分析的指标筛选的作用是保证蹄选出的评价指标体系简洁明快。基于主成分分析的指标简选的目的是筛选出重要的指标。

❹ 主成分分析法的具体步骤是

数据标准化;
求相关系数矩阵;
一系列正交变换,使非对角线上的数置0,加到主对角上;
得特征根xi(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;
求各个特征根对应的特征向量;
用下式计算每个特征根的贡献率Vi;
Vi=xi/(x1+x2+........)
根据特征根及其特征向量解释主成分物理意义。

❺ 主成分分析法

在对灾毁土地复垦效益进行分析时,会碰到众多因素,各因素间又相互关联,将这些存在相关关系的因素通过数学方法综合成少数几个最终参评因素,使这几个新的因素既包含原来因素的信息又相互独立。简化问题并抓住其本质是分析过程中的关键,主成分分析法可以解决这个难题。

(一)主成分分析的基本原理

主成分分析法(Principal Components Analysis,PCA)是把原来多个变量化为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理方法,即通过对原始指标相关矩阵内部结果关系的研究,将原来指标重新组合成一组新的相互独立的指标,并从中选取几个综合指标来反映原始指标的信息。假定有n个评价单元,每个评价单元用m个因素来描述,这样就构成一个n×m阶数据矩阵:

灾害损毁土地复垦

如果记m个因素为 x1,x2,…,xm,它们的综合因素为 z1,z2,…,zp(p≤m),则:

灾害损毁土地复垦

系数lij由下列原则来决定:

(1)zi与zj(i≠j,i,j=1,2,…,p)相互无关;

(2)z1是x1,x2,…,xm的一切线性组合中方差最大者,依此类推。

依据该原则确定的综合变量指标z1,z2,…,zp分别称为原始指标的第1、第2、…、第p个主成分,分析时可只挑选前几个方差最大的主成分。

(二)主成分分析法的步骤

(1)将原始数据进行标准化处理,以消除原始数据在数量级或量纲上的差异。

(2)计算标准化的相关数据矩阵:

灾害损毁土地复垦

(3)用雅克比法求相关系数矩阵R的特征值(λ1,λ2,…,λp)和与之相对应的特征向量 αi=(αi1,αi2,…,αip),i=1,2,…,p。

(4)选择重要的主成分,并写出其表达式。

主成分分析可以得到P个主成分,但是由于各个主成分的方差与其包含的信息量皆是递减的,所以在实际分析时,一般不选取P个主成分,而是根据各个主成分所累计的贡献率的大小来选取前K个主成分,这里的贡献率是指某个主成分的方差在全部方差中所占的比重,实际上也是某个特征值在全部特征值合计中所占的比重。即:

灾害损毁土地复垦

这说明,主成分所包含的原始变量的信息越强,贡献率也就越大。主成分的累计贡献率决定了主成分个数K的选取情况,为了保证综合变量能包括原始变量的绝大多数信息,一般要求累计贡献率达到85%以上。

另外,在实际应用过程中,选择主成分之后,还要注意主成分实际含义的解释。如何给主成分赋予新的含义,给出合理的解释是主成分分析中一个相当关键的问题。一般来说,这个解释需要根据主成分表达式的系数而定,并与定性分析来进行有效结合。主成分是原来变量的线性组合,在这个线性组合中各变量的系数有正有负、有大有小,有的又大小相当,因此不能简单地把这个主成分看作是某个原变量的属性作用。线性组合中各变量系数的绝对值越大表明该主成分主要包含了该变量;如果有几个大小相当的变量系数时,则认为这一主成分是这几个变量的综合,而这几个变量综合在一起具有什么样的实际意义,就需要结合具体的问题和专业,给出合理的解释,进而才能达到准确分析的目的。

(5)计算主成分得分。根据标准化的原始数据,将各个样品分别代入主成分表达式,就可以得到各主成分下的各个样品的新数据,即为主成分得分。具体形式可如下:

灾害损毁土地复垦

(6)依据主成分得分的数据,则可以进行进一步的统计分析。其中,常见的应用有主成分回归,变量子集合的选择,综合评价等。

(三)主成分分析法的评价

通过主成分分析法来评价复垦产生的效益,可将多个指标转化成尽可能少的综合性指标,使综合指标间互不相干,既减少了原指标信息的重叠度,又不丢失原指标信息的总含量。该方法不仅将多个指标转化成综合性指标,而且也能对每个主成分的影响因素进行分析,从而判别出影响整个评价体系的关键因素,并且主成分分析法在确定权重时可以科学地赋值,以避免主观因素的影响。

需要注意的是,主成分分析法虽然可以对每个主成分的权重进行科学、定量的计算,避免人为因素及主观因素的影响,但是有时候赋权的结果可能与客观实际有一定误差。因此,利用主成分分析法确定权重后,再结合不同专家给的权重,是最好的解决办法。这样可以在定量的基础上作出定性的分析,通过一定的数理方法将两种数据结合起来考虑。

❻ 如何用主成分分析法确定指标权重

在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。

层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,

形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。

(6)对股票做主成分分析法扩展阅读:

主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,

使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。

❼ 主成分分析法 10个变量抽几个

要求是最少二十个样本,十个变量。1、主成分分析在于对原始变量的线性变换,注意是转换、变换;而因子分析在于对原始变量的剖析,注意是剖析,是分解,分解为公共因子和特殊因子。2、这两种分析法得出的新变量,也就是成分或者因子,并不是原始变量筛选或者提出后剩余的变量。3、因子分析只能解释部分变异(指公共因子),主成分分析能解释所有变异(如果提取了所有成分)。4、主成分分析,有几个变量就至少有几个成分,一般只提取能解释8%以上的成分;因子分析,有几个变量不一定有几个公共因子,因为这里的因子是公因子,潜在的存在与每一个变量中,需要从每一个变量中去分解,无法解释的部分是特殊因子。5、spss因子分析过程对各变量间量纲和单位造成的影响,默认自动进行标准化处理,因此不必要在开始之前单独进行数据标准化处理,因为,标准化与否结果一致。6、spss因子分析重要结果:KMO值,此值是否进行计算与变量个数、样本个数有关,不一定会在每次执行中都显示,如没有此结果,可通过调整变量和样本的比例实现。

❽ 什么是主成分分析方法

主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面.但是,这也不是一定的,要视具体应用而定.