❶ python数据分析的一般步骤是什么
下面是用python进行数据分析的一般步骤:
一:数据抽取
从外部源数据中获取数据
保存为各种格式的文件、数据库等
使用Scrapy爬虫等技术
二:数据加载
从数据库、文件中提取数据,变成DataFrame对象
pandas库的文件读取方法
三:数据处理
数据准备:
对DataFrame对象(多个)进行组装、合并等操作
pandas库的操作
数据转化:
类型转化、分类(面元等)、异常值检测、过滤等
pandas库的操作
数据聚合:
分组(分类)、函数处理、合并成新的对象
pandas库的操作
四:数据可视化
将pandas的数据结构转化为图表的形式
matplotlib库
五:预测模型的创建和评估
数据挖掘的各种算法:
关联规则挖掘、回归分析、聚类、分类、时序挖掘、序列模式挖掘等
六:部署(得出结果)
从模型和评估中获得知识
知识的表示形式:规则、决策树、知识基、网络权值
更多技术请关注python视频教程。
❷ 学python能做什么
Python第三方模块众多,下面我介绍一些比较实用而又有趣的模块,主要分为爬虫、数据处理、可视化、机器学习、神经网络、股票财经、游戏这7个方面,主要内容如下:
1.爬虫:
相信大部分人都用Python爬过数据,目前来说,比较流行的框架是scrapy,对爬取数据来说,简单方便了不少,只需要自己添加少量的代码,框架便可启动开始爬取,当然,还有简单地爬虫包,像requests+BeautifulSoup,对于爬取简单网页来说,也足够了:
如果你想要学好Python最好加入一个好的学习环境,可以来这个Q群,首先是629,中间是440,最后是234,这样大家学习的话就比较方便,还能够共同交流和分享资料
2.数据处理:
numpy,scipy,pandas这些包对于处理数据来说非常方便,线性代数、科学计算等,利用numpy处理起来非常方便,pandas提供的DataFrame类可以方便的处理各种类型的文件,像excel,csv等,是分析数据的利器:
3.可视化:
这里的包其实也挺多的,除了我们常用的matplotlib外,还有seaborn,pyecharts等,可以绘制出各种各样类型的图形,除了常见的线图、饼图和柱状图外,还可以绘制出地图、词云图、地理坐标系图等,美观大方,所需的代码量还少,更容易上手:
4.机器学习:
说起python机器学习,大部分人都应该scikit-learn这个包,常见的机器学习算法,像回归、分类、聚类、降维、模型选择等,这里都有现成的代码可供利用,对于这机器学习方面感兴趣的人来说,这是一个入门机器学习的好包:
5.神经网络:
说起神经网络,大部分人都应该会想起深度学习,对应的就会想到谷歌目前非常流行的深度学习框架—tensorflow,tesndorflow可被用于语音识别和图像识别等众多领域,其发展前景光明,对于这方面感兴趣的科研人员来说,是一个很不错的工具,当然,还有基于tensorflow的theano,keras等,都是学习神经网络的不错选择:
6.股票财经:
对于股票和财经比较感兴趣的朋友来说,python也提供了现成的库来获取和分析股票财经数据—tushare,tushare是一个免费、开源的python财经数据接口包,可以快速的获取到国内大部分股票数据,对于金融分析人员来说,可以说是一个利器,降低了许多任务量:
7.游戏:
Python专门为游戏开发提供了一个平台—Pygame,对于想快速开发小型游戏的用户来说,是一个很不错的选择,简单易学、容易上手,脱离了低级语言的束缚,使用起来也挺方便的:
❸ 如何用Python进行线性回归以及误差分析
数据挖掘中的预测问题通常分为2类:回归与分类。
简单的说回归就是预测数值,而分类是给数据打上标签归类。
本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。
本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。
拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。
代码如下:
importmatplotlib.pyplot as plt
importnumpy as np
importscipy as sp
fromscipy.statsimportnorm
fromsklearn.pipelineimportPipeline
fromsklearn.linear_modelimportLinearRegression
fromsklearn.
fromsklearnimportlinear_model
''''' 数据生成 '''
x = np.arange(0,1,0.002)
y = norm.rvs(0, size=500, scale=0.1)
y = y + x**2
''''' 均方误差根 '''
defrmse(y_test, y):
returnsp.sqrt(sp.mean((y_test - y) **2))
''''' 与均值相比的优秀程度,介于[0~1]。0表示不如均值。1表示完美预测.这个版本的实现是参考scikit-learn官网文档 '''
defR2(y_test, y_true):
return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
''''' 这是Conway&White《机器学习使用案例解析》里的版本 '''
defR22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return1- rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
degree = [1,2,100]
y_test = []
y_test = np.array(y_test)
fordindegree:
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print(clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1','2','100'], loc='upper left')
plt.show()
该程序运行的显示结果如下:
[ 0. 0.75873781]
rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78
[ 0. 0.35936882 0.52392172]
rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87
[ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01
1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02
......
3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11
1.46657377e-11]
rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90
❹ python数据分析需要安装哪些包
如果你有一些了解的话,就知道目前市面上其实有很多 Python 数据分析的书籍,但每一本都很厚,学习阻力非常大。但其实真正最有用的那部分信息,只是这些书里很少的一部分。比如用 Python 实现不同案例的假设检验,其实你就可以对数据进行很好的验证。
比如掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归;
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型;
调参方法:如何调节参数优化模型;
Python 数据分析包:scipy、numpy、scikit-learn等。
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去学习如何通过特征提取、参数调节来提升预测的精度。这就有点数据挖掘和机器学习的味道了,其实一个好的数据分析师,应该算是一个初级的数据挖掘工程师了。
你可以通过 Python 中的 scikit-learn 来实现数据分析、数据挖掘建模和分析的全过程。
❺ python怎么做数据分析
链接:https://pan..com/s/1FJZAznKSbwv-X52AM7uSfg
炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。
课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。
课程目录:
Python基础
Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符
了解Python流程控制——条件、循环语句与其他语句
常用函数——函数的定义与使用方法、主要内置函数的介绍
.....
❻ 如何用python 取所有股票一段时间历史数据
各种股票软件,例如通达信、同花顺、大智慧,都可以实时查看股票价格和走势,做一些简单的选股和定量分析,但是如果你想做更复杂的分析,例如回归分析、关联分析等就有点捉襟见肘,所以最好能够获取股票历史及实时数据并存储到数据库,然后再通过其他工具,例如SPSS、SAS、EXCEL或者其他高级编程语言连接数据库获取股票数据进行定量分析,这样就能实现更多目的了。
❼ python如何做数据分析
Python做数据分析比较好用且流行的是numpy、pandas库,有兴趣的话,可以深入了解、学习一下。
❽ python数据分析使用的数据
1、对数据进行排序df.sort_values()
#读取数据
titanic_survival=pd.read_csv(r"C:Userspythonwandata_minepython_pandas itanic_train.csv")
#用sort_values()函数对指定列排序,默认升序排序,inplace=True表示在原来的df上排序titanic_survival.sort_values(("Age"),inplace=Tru
2、缺失值判断及统计pandas.isnull()、pandas.isnull
空值统计方法一:df.isnull().sum():
#当不指定具体列时,统计整个df的缺失值个数
titanic_survival['Age'].isnull().sum()
通过len()函数统计缺失值
3、缺失值处理
处理缺失值可以分为两类:删除缺失值和缺失值插补。而缺失值插补又分为以下几种:
均值/中位数/众数插补
使用固定值(将缺失值的属性用一个常量代替)
最近邻插补(在记录中找到与缺失值样本最接近的样本的该属性插补)
回归方法(对带有缺失值的变量,根据已有数据和与其有关的其他变量建立拟合模型来预测缺失值)
插值法(利用已知点建立合适的插值函数f(x),未知值由对应点xi求出来近似代替)
下面,我们主要讨论删除缺失值,学习一些pandas缺失值删除的操作。
1)df.dropna(),舍弃含有任意缺失值的行
#等价于titanic_survival.dropna(axis=0) axis=0表示删除行,axis=1表示删除列
dropall=titanic_survival.dropna()
删除含任意空值的行
2)df.dropna()函数删除某个列中含有空值的行
现在这个数据中age、cabin、embarked都有缺失值,如果我们直接使用df.dropna()会删除掉这三列中都有空值的所有行,但是我们希望只删除age列中有空值的数据,那该如何处理呢?
直接使用df.dropna(subset=['column_list'])
drop_age_null=titanic_survival.dropna(subset=["Age"])
删除指定列中含有缺失值的行
pandas自定义函数