当前位置:首页 » 分析预测 » excel股票回归分析软件
扩展阅读
300812股票行情 2025-02-01 15:14:28
2021买股票最少要 2025-02-01 15:09:40

excel股票回归分析软件

发布时间: 2022-08-22 04:21:12

Ⅰ 如何将EXCEL的股票数据导入到matlab软件中进行分析

望高手支招!
不一定要拷贝到data文件中啊,你使用xlsread时指定excel绝对路径就可以了嘛
二如果只是几个很大的矩阵数据,你直接在matlab中定义矩阵,再复制粘贴得了
定义矩阵就先定义个空的呗比如一维:a=zeros(1,n);%%这是1xn的二维:a=zeros(n)
%%这是nxn的
然后在workspace窗口打开这个空矩阵,把excel中的数直接复制过来就行了xlsread(),但是对excel表要求还挺高的,比如有次我就导入失败,是因为名字虽然是.xls,但是实际是
文本文件(制表符分隔)(*.txt)
格式的,所以你注意一下,对照matlab帮助,一般不会有问题如何把excel中的文本格式的数字转化成数值格式在一个空单元格输入1,并复制它选中要转化成数值的单元格区域
右击-选择性粘贴-乘补充回答:这样操作以后,仍不能转换数值,说明你原来的数据格式有问题,提示你检查以下几项:1、数据内是否存在空格,(可以通过查找替换,将空格替换掉)
2、数据内是否存在非法字符!清除后,就可以运算了有的时候还需要:把修改过的区域再进一步修改,全选中,然后“单元格格式”,把单元格格式由“常规”改为“数值”!!!

Ⅱ excel回归分析 估计股票β

www.tipdm.cn,这是一个在线的数据分析软件,对股票的回归分析也有

Ⅲ 在excel中怎么进行回归分析

用EXCEL做回归分析主要有图表法和函数法: 1、图表法: 选择参与一元线性回归两列数据(自变量x应在应变量y的左侧),插入图表,选择散点图。 选择图表中的数据系列,右击,添加趋势线,点击“选项”选项卡,勾选“显示公式”、显示R平方值。 注意显示出的R2值为R的平方,需要用SQRT()函数,计算出R值。 2、函数法 若X值序列在A1:A100单元格,Y值序列在B1:B100单元格, 则线性公式的截距b =INTERCEPT(B1:B100,A1:A100) 斜率k =SLOPE(B1:B100,A1:A100) 相关系数R =CORREL(A1:A100,B1:B100) 或 =CORREL(B1:B100,A1:A100) 上述两种方法都可以做回归分析,同时结合图表和函数会取得更满意的效果。

Ⅳ excel没有回归分析需要下载什么软件

需要下载数据分析软件。下载以后添加方法如下:
1、打开Excel2016,新建一个空白工作簿。
2、Excel默认下是没有数据分析选项的,所以需要添加数据分析选项。
3、点击文件。点击选项。在加载项中,选择(Excel加载项),再点击转到(G)。勾选上AnalysisToolPak和AnalysisToolPak-VBA,再点击确定。
4、然后最右边就有了数据分析选项。

Ⅳ 怎样用EXCEL分析股票

EXCEL全自动分析股市软件https://item.taobao.com/item.htm?id=532889729619

Ⅵ 如何用excel做回归分析

以Excel2010为例。
1、“开发工具”选项卡
中单击“加载项”组中的“加载项”按钮,打开“加载宏”对话框。如下图。勾选
“分析工具库”。

2、“数据”选项卡中“分析”组中的“数据分析”按钮,打开“数据分析”对话框。如下图。单击“回归”选项。

剩下的楼主自己搞定吧。

Ⅶ 如何用EXCEL做回归分析

在日常数据分析工作当中,回归分析是应用十分广泛的一种数据分析方法,按照涉及自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

回归分析的实施步骤:

1)根据预测目标,确定自变量和因变量

2)建立回归预测模型

3)进行相关分析

4)检验回归预测模型,计算预测误差

5)计算并确定预测值

我们接下来讲解在Excel2007中如何进行回归分析?

一、案例场景

为了研究某产品中两种成分A与B之间的关系,现在想建立不同成分A情况下对应成分B的拟合曲线以供后期进行预测分析。测定了下列一组数据:

Ⅷ 股票的贝塔系数怎么算用excel的回归分析

Cov(ra,rm) = ρamσaσm。

其中ρam为证券 a 与市场的相关系数;σa为证券 a 的标准差;σm为市场的标准差。

贝塔系数利用回归的方法计算: 贝塔系数等于1即证券的价格与市场一同变动。

贝塔系数高于1即证券价格比总体市场更波动,贝塔系数低于1即证券价格的波动性比市场为低。

如果β = 0表示没有风险,β = 0.5表示其风险仅为市场的一半,β = 1表示风险与市场风险相同,β = 2表示其风险是市场的2倍。

(8)excel股票回归分析软件扩展阅读

金融学运用了贝塔系数来计算在一只股票上投资者可期望的合理风险回报率: 个股合理回报率 =无风险回报率*+β×(整体股市回报率-无风险回报率) *可用基准债券的收益率代表。

贝塔系数=1,代表该个股的系统风险等同大盘整体系统风险,即受整体经济因素影响的程度跟大盘一样; 贝塔系数>1则代表该个股的系统风险高于大盘,即受整体经济因素影响的程度甚于大盘。

贝塔系数越高,投资该股的系统风险越高,投资者所要求的回报率也就越高。高贝塔的股票通常属于景气循环股(cyclicals),如地产股和耐用消费品股;低贝塔的股票亦称防御类股(defensive stocks),其表现与经济景气的关联度较低,如食品零售业和公用事业股。

个股的贝塔系数可能会随着大盘的升或跌而变动,有些股票在跌市中可能会较在升市具更高风险。

Ⅸ 怎么用excel进行回归分析

这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。
选择成对的数据列,将它们使用“X、Y散点图”制成散点图。

在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。

由图中可知,拟合的直线是y=15620x+6606.1,R2的值为0.9994。

因为R2 >0.99,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于99.99%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。
为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。

在选项卡中显然详细多了,注意选择X、Y对应的数据列。“常数为零”就是指明该模型是严格的正比例模型,本例确实是这样,因为在浓度为零时相应峰面积肯定为零。先前得出的回归方程虽然拟合程度相当高,但是在x=0时,仍然有对应的数值,这显然是一个可笑的结论。所以我们选择“常数为零”。
“回归”工具为我们提供了三张图,分别是残差图、线性拟合图和正态概率图。重点来看残差图和线性拟合图。

在线性拟合图中可以看到,不但有根据要求生成的数据点,而且还有经过拟和处理的预测数据点,拟合直线的参数会在数据表格中详细显示。本实例旨在提供更多信息以起到抛砖引玉的作用,由于涉及到过多的专业术语,请各位读者根据实际,在具体使用中另行参考各项参数,此不再对更多细节作进一步解释。
残差图是有关于世纪之与预测值之间差距的图表,如果残差图中的散点在中州上下两侧零乱分布,那么拟合直线就是合理的,否则就需要重新处理。

更多的信息在生成的表格中,详细的参数项目完全可以满足回归分析的各项要求。下图提供的是拟合直线的得回归分析中方差、标准差等各项信息。

Ⅹ 怎么用excel做回归分析

第一个模型还可以,但是存在自相关(DW检验值也就是Durbin-Watson stat 为0.85,正自相关),需要进行差分处理。估计是一阶自相关。
第二个模型,自变量没有一个显著的,确实需要更改。
看模型是否合适,一是系数显著性检验,一是方程显著性检验。一元回归时,两个检验是一样的,所以第一个模型中,自变量X系数估计值显著(X对应的Prob值为0.000,一般要求小于0.05就算通过),方程也显著(看F-statistic的值),但是一阶自相关最好消除。但是多元回归中,两个检验需要分开看。第二个模型中,方程显著性可能能通过检验,但是自变量系数估计值对应的Prob都大于0.05,所以问题比较大。
几个建议:
1、样本数据来源于1995年到2006年,感觉还是少了些,而且2011年的论文至少最晚应该是截止到2009年。如果条件允许,最好能够更早些数据。有25个以上年份数据,做的模型合适些。
2、第二个模型因为你没有列举具体自变量、因变量名称,不好下结论。那么,一个办法是考虑自变量的选择是不是合理,现有的自变量有没有可以去掉的,或者有没有遗漏更合理的自变量,调整自变量后再回归;如果你认为自变量不需要修改,在增加样本数据情况下,另一个办法是用SPSS软件,里面有“逐步回归”选项,看看能不能得到合理模型。第一个模型:一阶自相关怎么样才能消除?
第二个模型:我做的是山东省财政支农资金方面的课题,中国统计年鉴上的相关数据就到2006年,三个自变量的数据也是。三个自变量是必须要固定的,是不是因为数据的原因,但是近几年的数据确实找不到。三个自变量分别是:支援农业生产支出,农林水利气象等部门事业费,农业综合开发支出。因变量是:年均农民纯收入。这四个量都不能变。
我不会计量,eviews也是今天刚学的,spss更不会了。回答继续回答:
1、这里的一阶自相关,可以考虑用差分法试试。也就是自变量、因变量都分别形成新的序列,再做回归(注意:这时的回归估计模型不含常数项)。根据你的样本数据和解释变量数目,在新的回归结果里面,如果Durbin-Watson stat 的数值大致在1.5——2.5,可以认为消除了自相关。最后的估计结果,常数项仍采用现在模型已经估计出的常数项数值,自变量系数则是差分后估计的系数值。
2、财政支农资金数据,我觉得可以考虑查阅《中国财政统计年鉴》,其中的分省财政平衡表中可能会有相关数据。(不过我也不肯定,这两年中国统计年鉴中财政数据的具体项目有调整,你之所以找不到2006年以后数据原因也在于此,财政统计年鉴如果能找到的话,也许能有帮助)
3、第二个模型还可以考虑对数模型试一试,因为取对数后变差缩小,也许数据拟合效果会好些。当然,这时的系数表示的是平均意义的弹性。
4、不会逐步回归也没有关系,反正自变量不多。回归后,看哪个自变量系数估计值没有通过检验(P值大于0.05),P值最大的先去掉,用其他自变量再去拟合。如果新的估计结果不行,再继续去掉不显著的系数。之后可以尝试再引入之前去掉的自变量,回归后看是否显著。最后应该得到自变量系数和整个模型都通过检验的结果,否则是不合适的。
5、“我第二个模型P值是0.004”的说法不正确,你所说的实际是常数项的P值。实际上,一般要求自变量必须通过P检验,常数项倒无所谓。