当前位置:首页 » 分析预测 » r语言怎样分析股票数据格式
扩展阅读
陈欧父母 2025-01-23 07:57:43
网上买基金手续费 2025-01-23 07:45:49

r语言怎样分析股票数据格式

发布时间: 2022-09-01 08:35:35

『壹』 如何用r语言函数包分析自己的数据

library(*****)
你相应的包应该到R官方网站下载安装,然后用上面的函数加载就可以了.
祝你愉快,满意请采纳哦

『贰』 用R语言进行关联分析

用R语言进行关联分析
关联是两个或多个变量取值之间存在的一类重要的可被发现的某种规律性。关联分析目的是寻找给定数据记录集中数据项之间隐藏的关联关系,描述数据之间的密切度。
几个基本概念
1. 项集
这是一个集合的概念,在一篮子商品中的一件消费品即为一项(Item),则若干项的集合为项集,如{啤酒,尿布}构成一个二元项集。
2. 关联规则
一般记为的形式,X为先决条件,Y为相应的关联结果,用于表示数据内隐含的关联性。如:,表示购买了尿布的消费者往往也会购买啤酒。
关联性强度如何,由三个概念——支持度、置信度、提升度来控制和评价。
例:有10000个消费者购买了商品,其中购买尿布1000个,购买啤酒2000个,购买面包500个,同时购买尿布和面包800个,同时购买尿布和面包100个。
3. 支持度(Support)
支持度是指在所有项集中{X, Y}出现的可能性,即项集中同时含有X和Y的概率:
该指标作为建立强关联规则的第一个门槛,衡量了所考察关联规则在“量”上的多少。通过设定最小阈值(minsup),剔除“出镜率”较低的无意义规则,保留出现较为频繁的项集所隐含的规则。
设定最小阈值为5%,由于{尿布,啤酒}的支持度为800/10000=8%,满足基本输了要求,成为频繁项集,保留规则;而{尿布,面包}的支持度为100/10000=1%,被剔除。
4. 置信度(Confidence)
置信度表示在先决条件X发生的条件下,关联结果Y发生的概率:
这是生成强关联规则的第二个门槛,衡量了所考察的关联规则在“质”上的可靠性。相似的,我们需要对置信度设定最小阈值(mincon)来实现进一步筛选。
具体的,当设定置信度的最小阈值为70%时,置信度为800/1000=80%,而的置信度为800/2000=40%,被剔除。
5. 提升度(lift)
提升度表示在含有X的条件下同时含有Y的可能性与没有X这个条件下项集中含有Y的可能性之比:
该指标与置信度同样衡量规则的可靠性,可以看作是置信度的一种互补指标。
R中Apriori算法
算法步骤:
1. 选出满足支持度最小阈值的所有项集,即频繁项集;
2. 从频繁项集中找出满足最小置信度的所有规则。
> library(arules) #加载arules包
> click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)) #读取txt文档(文档编码为ANSI)
> rules <- apriori(click_detail, parameter =list(supp=0.01,conf=0.5,target="rules")) #调用apriori算法
> rules
set of419 rules
> inspect(rules[1:10]) #查看前十条规则
解释
1) library(arules):加载程序包arules,当然如果你前面没有下载过这个包,就要先install.packages(arules)
2) click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)):读入数据
read.transactions(file, format =c("basket", "single"), sep = NULL,
cols = NULL, rm.plicates =FALSE, encoding = "unknown")
file:文件名,对应click_detail中的“click_detail.txt”
format:文件格式,可以有两种,分别为“basket”,“single”,click_detail.txt中用的是basket。
basket: basket就是篮子,一个顾客买的东西都放到同一个篮子,所有顾客的transactions就是一个个篮子的组合结果。如下形式,每条交易都是独立的。
文件形式:
item1,item2
item1
item2,item3
读入后:
items
1 {item1,
item2}
2 {item1}
3 {item2,
item3}
single: single的意思,顾名思义,就是单独的交易,简单说,交易记录为:顾客1买了产品1, 顾客1买了产品2,顾客2买了产品3……(产品1,产品2,产品3中可以是单个产品,也可以是多个产品),如下形式:
trans1 item1
trans2 item1
trans2 item2
读入后:
items transactionID
1 {item1} trans1
2 {item1,
item2} trans2
sep:文件中数据是怎么被分隔的,默认为空格,click_detail里面用逗号分隔
cols:对basket, col=1,表示第一列是数据的transaction ids(交易号),如果col=NULL,则表示数据里面没有交易号这一列;对single,col=c(1,2)表示第一列是transaction ids,第二列是item ids
rm.plicates:是否移除重复项,默认为FALSE
encoding:写到这里研究了encoding是什么意思,发现前面txt可以不是”ANSI”类型,如果TXT是“UTF-8”,写encoding=”UTF-8”,就OK了.
3) rules <- apriori(click_detail,parameter = list(supp=0.01,conf=0.5,target="rules")):apriori函数
apriori(data, parameter = NULL, appearance = NULL, control = NULL)
data:数据
parameter:设置参数,默认情况下parameter=list(supp=0.1,conf=0.8,maxlen=10,minlen=1,target=”rules”)
supp:支持度(support)
conf:置信度(confidence)
maxlen,minlen:每个项集所含项数的最大最小值
target:“rules”或“frequent itemsets”(输出关联规则/频繁项集)
apperence:对先决条件X(lhs),关联结果Y(rhs)中具体包含哪些项进行限制,如:设置lhs=beer,将仅输出lhs含有beer这一项的关联规则。默认情况下,所有项都将无限制出现。
control:控制函数性能,如可以设定对项集进行升序sort=1或降序sort=-1排序,是否向使用者报告进程(verbose=F/T)
补充
通过支持度控制:rules.sorted_sup = sort(rules, by=”support”)
通过置信度控制:rules.sorted_con = sort(rules, by=”confidence”)
通过提升度控制:rules.sorted_lift = sort(rules, by=”lift”)
Apriori算法
两步法:
1. 频繁项集的产生:找出所有满足最小支持度阈值的项集,称为频繁项集;
2. 规则的产生:对于每一个频繁项集l,找出其中所有的非空子集;然后,对于每一个这样的子集a,如果support(l)与support(a)的比值大于最小可信度,则存在规则a==>(l-a)。
频繁项集产生所需要的计算开销远大于规则产生所需的计算开销
频繁项集的产生
几个概念:
1, 一个包含K个项的数据集,可能产生2^k个候选集

2,先验原理:如果一个项集是频繁的,则它的所有子集也是频繁的(理解了频繁项集的意义,这句话很容易理解的);相反,如果一个项集是非频繁的,则它所有子集也一定是非频繁的。

3基于支持度(SUPPORT)度量的一个关键性质:一个项集的支持度不会超过它的子集的支持度(很好理解,支持度是共同发生的概率,假设项集{A,B,C},{A,B}是它的一个自己,A,B,C同时发生的概率肯定不会超过A,B同时发生的概率)。
上面这条规则就是Apriori中使用到的,如下图,当寻找频繁项集时,从上往下扫描,当遇到一个项集是非频繁项集(该项集支持度小于Minsup),那么它下面的项集肯定就是非频繁项集,这一部分就剪枝掉了。
一个例子(网络到的一个PPT上的):
当我在理解频繁项集的意义时,在R上简单的复现了这个例子,这里采用了eclat算法,跟apriori应该差不多:
代码
item <- list(
c("bread","milk"),
c("bread","diaper","beer","eggs"),
c("milk","diaper","beer","coke"),
c("bread","milk","diaper","beer"),
c("bread","milk","diaper","coke")
)
names(item) <- paste("tr",c(1:5),sep = "")
item
trans <- as(item,"transactions") #将List转为transactions型
rules = eclat(trans,parameter = list(supp = 0.6,
target ="frequent itemsets"),control = list(sort=1))
inspect(rules) #查看频繁项集
运行后结果:
>inspect(rules)
items support
1{beer,
diaper} 0.6
2{diaper,
milk} 0.6
3{bread,
diaper} 0.6
4{bread,
milk} 0.6
5{beer} 0.6
6{milk} 0.8
7{bread} 0.8
8{diaper} 0.8
以上就是该例子的所有频繁项集,然后我发现少了{bread,milk,diaper}这个项集,回到例子一看,这个项集实际上只出现了两次,所以是没有这个项集的。
规则的产生
每个频繁k项集能产生最多2k-2个关联规则
将项集Y划分成两个非空的子集X和Y-X,使得X ->Y-X满足置信度阈值
定理:如果规则X->Y-X不满足置信度阈值,则X’->Y-X’的规则一定也不满足置信度阈值,其中X’是X的子集
Apriori按下图进行逐层计算,当发现一个不满足置信度的项集后,该项集所有子集的规则都可以剪枝掉了。

『叁』 如何在r语言中抓取股票数据并分析论文

用quantomd包
然后getsymbols函数

分析论文 要看你研究方向
如果是看影响因素 一般回归就行
如果看股票波动和预测 可能需要时间序列

『肆』 R语言相关性分析图。想知道怎么分析这些数据

框内的数字是行变量和列变量之间的相关系数R,相关系数R绝对值越大,颜色越深(红正,蓝负)。统计学中,P值越小相关性越显著,一般来说 一个*代表显著相关(P值为0.01,选取不同参数可能不一样)、两个**代表极显著相关(P值为0.001)、三个***代表极极显著相关(P值为0.0001). 图中还可以看出,相关系数R的绝对值0.67(变量P50与T之间)以上的都显著相关,至少一个*。符合一般关于相关系数R值的显著性统计。

『伍』 如何用R语言的quantmod包获取一系列股票的历史日线数据

我举个例子供你参考:
> install.packages('quantmod') # 安装安装quantmod包
> require(quantmod)#引用quantmod包
> getSymbols("GOOG",src="yahoo",from="2013-01-01", to='2013-04-24') #从雅虎财经获取google的股票数据
> chartSeries(GOOG,up.col='red',dn.col='green') #显示K线图

『陆』 R语言怎么把股票日收盘价转换成对数收益率

知道一系列收盘价向量X,length=1000,求对数收益率的R语言代码
acf(int[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly

acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
log return')

Box.test(int[,2], lag = 5, type = "Ljung-Box")
Box.test(int[,2], lag = 10, type = "Ljung-Box")
Box.test(int.l[,2], lag = 5, type = "Ljung-Box")
Box.test(int.l[,2], lag = 10, type = "Ljung-Box")

运行结错误办

> int <- read.table("d-intc7208.txt", head=T)
错误于file(file, "rt") : 打链结
外: 警告信息:
In file(file, "rt") :
打文件'd-intc7208.txt': No such file or directory

+ acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int monthly
错误: 意外符号 in:
"
acf(int.l[,2], lag.max = 15,type = "correlation", plot = TRUE,main='int"
> log return')
错误: 意外符号 in "log return"

『柒』 基于r语言的dea分析的分析结果怎么看

方法/步骤

1.录入原始数据。如图所示,原始数据一般采用excel表格来录入,第一列为决策单元序列,比如公司、行业等;后续各列依次是产出和投入变量,切忌产出变量一定要在投入变量前面。

2.分析效率情况。如图所示,将原始数据的格式进行统一调整之后,导入deap分析软件中,设定好相应的程序和命令后,即可运行出数据分析的结果。其中firm是公司序号,crste是技术效率,vrste是纯技术效率,scale是规模效率,最后一列是规模报酬的状态,irs是规模报酬递增,drs是规模报酬递减,-是规模报酬不变。

3
2.分析冗余情况。如图所示,DEA数据分析结果会分别给出投入、产出的冗余量,其中产出冗余数值是表示产出少了多少,而投入冗余则是表示投入多了多少。

4
4.分析参考单元。如图所示,peers表示的是可以作为效率改进参照的公司序号。由结果可见,5和13的决策单元的效率值为一,这样其他公司以此作为参照,对投入产出量进行调整,便可实现DEA有效。

『捌』 数据分析师是干什么之R语言数据可视化详细介绍

什么是数据分析?
不知道题主是否区分数据分析与数据挖掘,前者偏向于业务分析,后者偏向于数据库算法。如果题主只是想问问什么是数据分析,大概谈一谈近年来的对数据分析的理解吧!
一句话概括下数据分析:借助数据来指导决策,而不是拍脑袋!传统行业的决策过多依赖于领导人得眼光和洞察力,而数据分析要做的事,就是把这些眼光和洞察力转化为人人可读的数字!
这里细分一下数据分析的框架:明确分析目标、数据收集、数据清理、数据分析、数据报告、执行与反馈。
1.首先是数据分析的目的性极强
区别于数据挖掘的找关联、分类、聚类,数据分析更倾向于解决现实中的问题。我想解决什么问题?通过这次的分析能让我产生什么决策?比如是否在某个高校举办一场活动,是否把我们的补贴政策再增加10元等等,数据分析的目的性极强。
2.数据收集
数据分析区别于数据挖掘的第一点就是数据来源。数据分析的数据可能来源于各种渠道,数据库、信息采集表、走访等等各种形式的数据,只要是和分析目标相关,都可以收集。而数据挖掘则偏向于数据库数据的读取。
3.数据清理
由于数据分析的数据来源相比于数据挖掘的直接从数据库调取,数据分析的数据更加杂乱无章,你可能是从别人的分析报告里找数据,从网络上搜索数据,这些数据的格式、字段都不统一,在这里你需要根据你的目的进行归类、整合。
4.数据分析
数据分析是全流程最重要的过程了!这里最重要的事情是:时刻想着你的目标是什么?比如了解某个时间段的交易状况,你要根据这个目标做同比、环比等等...这一块的方法极多,内容极大。由于题主只是想了解数据分析是什么,这里就不做过多的阐述。
5.数据报告
数据报告就是阐述你的结果嘛!你可以搞一堆大家看不懂的公式什么的证明你的专业性,但是这里需要你用最通俗易懂的语言告诉你的领导:做这件事有80%的概率收获100W。OK!就是这么简单!
6.执行与反馈
就是开始干活嘛!同时干完活后需要用数据监测是否达到既定目标?如果达到了,关键因素是什么?如果没达到,问题出在哪里?

『玖』 如何用R语言提取股票行情数据

最上边一行菜单栏倒数第二个“高级”-“关联任务定义”-选取最右边从上到下第二个按钮,找到2009年决算任务安装路径-确定。 然后 最上边一行菜单栏正数第二个“录入”-“上年数据提取”即可 提取完了,注意修改与去年不同的科目代码!

『拾』 R语言基本数据分析

R语言基本数据分析
本文基于R语言进行基本数据统计分析,包括基本作图,线性拟合,逻辑回归,bootstrap采样和Anova方差分析的实现及应用。
不多说,直接上代码,代码中有注释。
1. 基本作图(盒图,qq图)
#basic plot
boxplot(x)
qqplot(x,y)
2. 线性拟合
#linear regression
n = 10
x1 = rnorm(n)#variable 1
x2 = rnorm(n)#variable 2
y = rnorm(n)*3
mod = lm(y~x1+x2)
model.matrix(mod) #erect the matrix of mod
plot(mod) #plot resial and fitted of the solution, Q-Q plot and cook distance
summary(mod) #get the statistic information of the model
hatvalues(mod) #very important, for abnormal sample detection
3. 逻辑回归

#logistic regression
x <- c(0, 1, 2, 3, 4, 5)
y <- c(0, 9, 21, 47, 60, 63) # the number of successes
n <- 70 #the number of trails
z <- n - y #the number of failures
b <- cbind(y, z) # column bind
fitx <- glm(b~x,family = binomial) # a particular type of generalized linear model
print(fitx)

plot(x,y,xlim=c(0,5),ylim=c(0,65)) #plot the points (x,y)

beta0 <- fitx$coef[1]
beta1 <- fitx$coef[2]
fn <- function(x) n*exp(beta0+beta1*x)/(1+exp(beta0+beta1*x))
par(new=T)
curve(fn,0,5,ylim=c(0,60)) # plot the logistic regression curve
3. Bootstrap采样

# bootstrap
# Application: 随机采样,获取最大eigenvalue占所有eigenvalue和之比,并画图显示distribution
dat = matrix(rnorm(100*5),100,5)
no.samples = 200 #sample 200 times
# theta = matrix(rep(0,no.samples*5),no.samples,5)
theta =rep(0,no.samples*5);
for (i in 1:no.samples)
{
j = sample(1:100,100,replace = TRUE)#get 100 samples each time
datrnd = dat[j,]; #select one row each time
lambda = princomp(datrnd)$sdev^2; #get eigenvalues
# theta[i,] = lambda;
theta[i] = lambda[1]/sum(lambda); #plot the ratio of the biggest eigenvalue
}

# hist(theta[1,]) #plot the histogram of the first(biggest) eigenvalue
hist(theta); #plot the percentage distribution of the biggest eigenvalue
sd(theta)#standard deviation of theta

#上面注释掉的语句,可以全部去掉注释并将其下一条语句注释掉,完成画最大eigenvalue分布的功能
4. ANOVA方差分析

#Application:判断一个自变量是否有影响 (假设我们喂3种维他命给3头猪,想看喂维他命有没有用)
#
y = rnorm(9); #weight gain by pig(Yij, i is the treatment, j is the pig_id), 一般由用户自行输入
#y = matrix(c(1,10,1,2,10,2,1,9,1),9,1)
Treatment <- factor(c(1,2,3,1,2,3,1,2,3)) #each {1,2,3} is a group
mod = lm(y~Treatment) #linear regression
print(anova(mod))
#解释:Df(degree of freedom)
#Sum Sq: deviance (within groups, and resials) 总偏差和
# Mean Sq: variance (within groups, and resials) 平均方差和
# compare the contribution given by Treatment and Resial
#F value: Mean Sq(Treatment)/Mean Sq(Resials)
#Pr(>F): p-value. 根据p-value决定是否接受Hypothesis H0:多个样本总体均数相等(检验水准为0.05)
qqnorm(mod$resial) #plot the resial approximated by mod
#如果qqnorm of resial像一条直线,说明resial符合正态分布,也就是说Treatment带来的contribution很小,也就是说Treatment无法带来收益(多喂维他命少喂维他命没区别)
如下面两图分别是
(左)用 y = matrix(c(1,10,1,2,10,2,1,9,1),9,1)和
(右)y = rnorm(9);
的结果。可见如果给定猪吃维他命2后体重特别突出的数据结果后,qq图种resial不在是一条直线,换句话说resial不再符合正态分布,i.e., 维他命对猪的体重有影响。