1. 量化投资,如何量化呢
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
1·量化选股
量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类
2·量化择时
股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3·股指期货
股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同(但相近)类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。股指期货套利的研究主要包括现货构建、套利定价、保证金管理、冲击成本、成分股调整等内容。
4·商品期货
商品期货套利盈利的逻辑原理是基于以下几个方面 :
(1)相关商品在不同地点、不同时间对应都有一个合理的价格差价。
(2)由于价格的波动性,价格差价经常出现不合理。
(3)不合理必然要回到合理。
(4)不合理回到合理的这部分价格区间就是盈利区间。
5·统计套利
有别于无风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。统计套利在方法上可以分为两类,一类是利用股票的收益率序列建模,目标是在组合的β值等于零的前提下实现alpha 收益,我们称之为β中性策略;另一类是利用股票的价格序列的协整关系建模,我们称之为协整策略。
6·期权套利
期权套利交易是指同时买进卖出同一相关期货但不同敲定价格或不同到期月份的看涨或看跌期权合约,希望在日后对冲交易部位或履约时获利的交易。期权套利的交易策略和方式多种多样,是多种相关期权交易的组合,具体包括:水平套利、垂直套利、转换套利、反向转换套利、跨式套利、蝶式套利、飞鹰式套利等。
7·算法交易
算法交易又被称为自动交易、黑盒交易或者机器交易,它指的是通过使用计算机程序来发出交易指令。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格、甚至可以包括最后需要成交的证券数量。根据各个算法交易中算法的主动程度不同,可以把不同算法交易分为被动型算法交易、主动型算法交易、综合型算法交易三大类。
8·资产配置
资产配置是指资产类别选择,投资组合中各类资产的适当配置以及对这些混合资产进行实时管理。量化投资管理将传统投资组合理论与量化分析技术的结合,极大地丰富了资产配置的内涵,形成了现代资产配置理论的基本框架。
它突破了传统积极型投资和指数型投资的局限,将投资方法建立在对各种资产类股票公开数据的统计分析上,通过比较不同资产类的统计特征,建立数学模型,进而确定组合资产的配置目标和分配比例。
2. 股票投资分析的方法有哪些
一、股票投资目的
1.获利;即作为一般的证券投资,获取股利收入及股票买卖差价。
2.控股;即通过购买某一企业的大量股票达到控制该企业的目的。
二、股票投资分析方法
主要有四大类:基本分析、技术分析、量化分析法、演化分析法。
1、基本分析法
基本分析法通过对决定股票内在价值和影响股票价格的宏观经济形势,行业状况,经营状况等进行分析,评估股票的投资价值和合理价值,与股票市场价进行比较,相应形成买卖的建议。 基本分析包括下面三个方面内容:
宏观经济分析。研究经济政策(货币政策,税收政策,产业政策等等),经济指标(生产总值,失业率,通胀率,利率,汇率等等)对股票市场的影响。行业分析。分析产业前景,区域经济发展对企业的影响企业分析。具体分析企业行业地位,市场前景,财务状况。
2、技术分析法
技术分析法从股票的成交量,价格,达到这些价格和成交量所用的时间,价格波动的空间几个方面分析走势并预测未来。目前常用的有K线理论,波浪理论,形态理论,趋势线理论和技术指标分析等,在后面将做详细分析。
3、量化分析法
量化分析法是利用数学和计算机的方法对股票进行分析,从而找出涨跌的概率,将量化分析方法设定为:
a. 趋势判断型量化投资策略
判断趋势型是一种高风险的投资方式,通过对大盘或者个股的趋势判断,进行相应的投资操作。如果判断是趋势向上则做多,如果判断趋势向下则做空,如果判断趋势盘整,则进行高抛低吸。这种方式的优点是收益率高,缺点是风险大。一旦判断错误则可能遭受重大损失。所以趋势型投资方法适合于风险承受度比较高的投资者,在承担大风险的情况下,也会有机会获得高额收益。
b.波动率判断型量化投资策略
判断波动率型投资方法,本质上是试图消除系统性风险,赚取稳健的收益。这种方法的主要投资方式是套利,即对一个或者N个品种,进行买入同时并卖出另外一个或N个品种的操作,这也叫做对冲交易。这种方法无论在大盘哪个方向波动,向上也好,向下也好,都可以获得一个比较稳定的收益。在牛市中,这种方法收益率不会超越基准,但是在熊市中,它可以避免大的损失,还能有一些不错的收益。
股指期货套利是在股票和股指期货之间的对冲操作,商品期货是在不同的期货品种之间,统计套利是在有相关性的品种之间,期权套利则是在看涨看跌期权之间的对冲。
4、演化分析法
演化分析是以演化证券学理论为基础,将股市波动的生命运动特性作为主要研究对象,对股价波动方向与空间进行动态跟踪研究,为股票交易决策提供机会和风险评估的方法总和。
演化分析法认为股市运作的背后具有很强的生物进化逻辑,所有市场行为都受到生物进化法则的广泛制约,只要多从“生物本能”和“适应与竞争”的角度观察市场,就可以找到持续性盈利的思路、线索和方法。
3. 量化分析方法有几种
量化分析法是对通过定性风险分析排出优先顺序的风险进行量化分析。尽管有经验的风险经理有时在风险识别之后直接进行定量分析,但定量风险分析一般在定性风险分析之后进行。定量风险分析一般应当在确定风险应对计划时再次进行,以确定项目总风险是否已经减少到满意。重复进行定量风险分析反映出来的趋势可以指出需要增加还是减少风险管理措施,它是风险应对计划的一项依据,并作为风险监测和控制的组成部分。
(一)技术分析法
技术分析法的主要目标是通过对市场的历史数据的研究,特别是对价格和交易量的研究,来预测价格的变动方向。技术分析法通常分析市场价格图标,因此技术分析师被称为“图表分析专家”。目的在于识别价格模式和市场趋势,从而试图预测未来的变化趋势。技术分析法的原理包括市场行为包容一切信息(技术分析法旨在弄明白投资者对于此类信息的反应),价格以趋势方式演变,历史价格趋于重演,并且投资者具有重蹈先前投资者覆辙的特征。
(二)基本面分析法
基本面分析法重点分析经济状态、利率、通货膨胀、公司收益、公司资产负债表、以及中央银行和政府的相关政策。
当基本面分析法应用于选股时,通常会结合对经济整体方向自上而下的分析(宏观),从而形成对于市场、行业、利率水平以及汇率水平的观点,并加之运用自下而上的方法对于某只股票进行分析(微观)。自下而上的分析往往会忽略在国别以及产业方面的整体配置而关注于单只股票的选择。根据投资理念和投资过程,自上而下的分析决定了国别和行业的配置;同时,自下而上的分析则决定了某一国家和行业内部的投资配置。
(三)量化分析法
量化(定量)分析法,正如其名,包括运用量化方法、统计模型、数学公式以及算法来预测市场走向。在战术型资产配置中一个常见的方法便是使用多因子模型,通过分析估值、动量指标、风险水平、市场情绪、利率、收益率曲线等因素,从而推导出涵盖股票、债券和外汇市场等不同市场的买入和卖出信号。虽然有一部分战术型资产配置策略完全是量化模型驱动的,但将量化分析和基本面分析相结合将更具活力,因为这种结合可以将量化信号融合入基本面分析的过程中。
量化分析的不足在于该分析很大程度上是以观测到的市场价格的历史关联性和走势为基础。如果上述关联性和走势由于市场反转或市场承压而引起历史关联性发生变化而失效,那么量化模型可能会在预测拐点过程中失效。量化模型往往也会在出现政权更替或市场结构化改变时失效。
4. 股票量化是什么
股票量化即“量化交易”有两层含义:一是狭义的,指量化交易的内容,将交易条件转化为程序,自动下单;第二,广义上是指系统交易方式,是一个综合的交易系统。也就是说,根据一系列的交易条件,一个智能的辅助决策系统,将丰富的经验与交易条件相结合,在交易过程中管理风险控制。
通过量化交易制定策略的方法极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
具体如何理解股票量化交易,量化交易至少应该包括五个方面的要素:
(1)买入和卖出的信号系统。
(2)牛市还是熊市的方向指引,比如用200天移动平均线分辨熊市中系统风险的规避。
(3)头寸管理以及资金管理。
(4)风险控制,运用信号源来确定止损位置,利用资产曲线和权益曲线来加以判定和管理。
(5)投资组合,不一样的投资品种、不相同的交易系统(不同功能和参数,有快有慢)以及不相同时间周期组合,现分散组合,让交易账户波动更加稳定。以上就是关于如何理解股票量化交易的全部讲解。
量化投资和传统的定性投资本质上是一样的,都是建立在低效或弱有效市场的理论基础上。两者的区别在于:量化投资管理是“定性思维的定量应用”,更强调数据。
从量化交易的角度来看,目前国内多采用监督式机器学习。例如,我们将投资交易比作装配厂。手工交易就像工人手工完成的传统装配工作。量化交易就像把工厂改造成全自动装配车间。虽然在整个,组装过程中没有人的参与,但是设计师应该指定机器在顶级设计中应该在什么时候做什么。
5. 如何量化炒股
首先,可以通过学习量化策略来进行,主要包括多因子策略、统计套利、机器学习。
量化交易是一种新兴的系统化金融投资方法,它综合多个学科的知识,用先进的数学模型代替人的主观思维制定交易策略,利用计算机强大的运算力从庞大的股票、债券、 期货等历史数据中回测交易策略的盈亏“概率”,通过管理盈亏的“概率”帮助投资者做出准确的决策。
此外,我们可以通过数库多因子量化平台进行炒股,它会呈现出影响股价走势的相关因子,让投资者从中选取影响力高的因子,组合成量化策略,进行收益对比分析,得出最理想的股票组合。还可以自由添加、删除、收藏多个因子,仅需几秒钟就可以完成大量的数据运算,操作方便快捷。
潜在风险
量化交易一般会经过海量数据仿真测试和模拟操作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险最小化和收益最大化,但往往也会存在一定的潜在风险,具体包括:
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。
6. 数据分析必读干货:简单而实用的3大分析方法
导读:数据分析师需要哪些“专业技能”?如果有人建议你去学习R语言、tableau、PowerBI,那么我建议你不如先从最基础也是最核心的数据分析方法学起。
在一家年销售不到10亿的电商公司(行业中大部分电商企业年销售可能都不到1个亿),你只要掌握一些基础的数据分析方法,再配合Excel表格,就足够你完成各种数据化运营工作了。
本文主要讲解日常数据分析中,最常用的三大数据分析方法 。内容虽然简单,但是其中充满了大量的细节方面的实用技巧。
01 对比
对比是所有数据分析方法中最基础,也是大家耳熟能详的一个。俗话说,无对比,不分析。说的就是对比分析法了。
在实际分析场景中,对比有不同的应用维度。比如有环比、同比、横比、纵比、绝对值对比,相对值对比等。下面我们分别解释一下它们的不同应用场景。
1. 绝对值对比与相对值对比
从概念上而言,绝对值包含正数、负数和零值。在电商数据分析中,一般是指正数之间的对比较多,如销售额、退货额等;相对值对比,则是指转化率、完成率等这类相对数之间的对比。
2. 环比
环比是指统计周期内的数据与上期数据的比较,比如2017年6月数据与2017年5月数据的比较。
在电商数据分析中,由于每个自然月之间的销售差额比较大,如果采用绝对指标,便很难通过对比观察到业务的变化。
因此,一般会采用相对指标来做环比分析,如2017年6月的销售达标率是102%,2017年5月的销售达标率是96%;这样便很容易知道两个月度之间转化率的好坏优劣了。然而,如果我们用绝对值来对比:2017年6月销售额500万,2017年5月销售额300万,这样的对比便很难判断究竟哪个月的销售额完成得更好。
3. 同比
同比是指统计周期内数据与去年同期数据之间的对比,比如2017年6月销售额是500万,2016年6月销售额是450万,同比增加11.1%。
在电商分析中,同比是应用最广泛的数据分析方法。通过同比,我们能大致判断店铺的运营能力在最近一年中,是保持增长还是呈下滑趋势。
同时,也可以根据同比增长趋势,来制订初步的销售计划。如表3-4所示,假设现在店铺流量同比下降8%(流量下降是平台趋势),客单价保持不变的情况下,要想实现店铺销售业绩的上升,唯有提升转化率。
因此,我们通过表3-4的模拟推算,可以得知,当转化率提升21%,到达0.35%时(0.35%转化率被认为是行业的平均值),业绩会提升11%。
▼表3-4 店铺销售计划推算模拟表
4. 横向对比与纵向对比
所谓横向对比与纵向对比,是指空间与时间两个不同的维度之间的对比。横向对比是空间维度的对比,指同类型的不同对象在统一的标准下进行的数据对比。如“本店”与“竞品”之间的对比;纵向对比是时间维度的对比,指同一对象在不同时间轴上的对比。如前面提到的“同比”“环比”都是纵向对比。
5. 份额
严格地说,“份额”属于横向对比的一种。由于在实际分析场景中它经常会被忽略,因此单独罗列出来,加以说明。
在某些情况下,数据表格中多一个“份额”,会让表格清晰明了许多。
如表3-5所示,假设我们要分析“某品牌天猫、京东、唯品会三大渠道”的“上衣、下衣、连衣裙和其他”在“Q1~Q4季度”的销售趋势和表现。常规的分析方法是,按照表1的表格结构,将各种数据有层次地展现出来。这时,所有的销售数据在表格中可以层次分明地一览无余。
▼表3-5 以份额处理的数据表格
但是,如表1这般的数据却不能直观告诉我们每个销售类别在不同渠道和不同季度的销售趋势是什么。因此,在数据分析中便需要加入表2这样的“份额”分析表格。如此,我们便可一目了然地掌握每个类别在不同渠道、不同时期的销售趋势。因此也就达到了数据分析的目的。
很多数据分析师往往只是完成了“表1”的分析步骤,却缺少临门一脚,没有把“表2”也同步呈现出来。
02 细分
细分,是一种从概念上理解非常容易,但实际应用起来却很难的分析方法。
细分分析法,常用于为分析对象找到更深层次的问题根源。难点在于我们要理解从哪个角度进行“细分”与“深挖”才能达到分析目的。就好像高中课程中解几何题一样,如果找对了“解题思路”,问题就迎刃而解;如果“解题思路”错了,劳心费力不说,问题还解决不了。
在实际应用中,细分有许多不同的方法,就如同我们在解题时,有各种不同的“解题思路”一样。有时候,面对同一个问题,两个不同的解题思路都可以达到解题的目的;但更多时候,只有唯一正确的解题思路才可以正确地解题。所以,在分析之前,选择正确的‘细分’方法便非常重要。
下面,我们就具体来看一下,在细分分析中,有哪些解题思路。
1. 分类分析
就是指对所有需要被分析到的数据单元,按照某种标准打上标签,再根据标签进行分类,然后使用汇总或者对比的方法来进行分析。
在服装行业中,常用于做分类分析的标签有“类目”“价格带”“折扣带”“年份”“季节”等。
通过从“年份”“季节”的维度来对商品库存进行细分,我们可以轻松地知道有多少货属于“库存”,有多少货属于“适销品”;
通过从“折扣带”的维度来对销售流水进行细分,我们可以大致知道店铺的盈利情况;
通过从“类目”的维度对销售流水和库存同时进行细分,我们可以知道统计周期内品类的销售动态与库存满足度。
2. 人—货—场
“人—货—场”能够为人提供宏观视野的分析。其原理类似于分类分析,即将所有需要被分析到的数据单元,打上“人”“货”“场”的标签,然后再进行相应的数据分析与处理。
在实际应用场景中,“人—货—场”分析法往往被灵活运用在初步诊断某一竞品店铺时。
如图3-3所示是利用“人—货—场”逻辑方法来分析竞品店铺的主流思路。在分析之前,先把“解题思路”用“人—货—场”的方式罗列出来,把所有能够想到的有用的“分支”都罗列出来,然后查漏补缺、标注重要与非重要。最后,再按此“解题思路”来进行分析。便可达到事半功倍的分析效果。
▲图3-3 利用“人—货—场”细分方法初步分析竞品店铺
3. 杜邦分析法
细分分析方法中,还有一种知名的分析方法,叫“杜邦分析法”。在电商数据分析中,杜邦分析也是常被使用的分析方法之一。
网络中对杜邦分析的解释是:“杜邦分析法(DuPont Analysis)是利用几种主要财务比率之间的关系来综合分析企业的财务状况。具体来说,它是一种用来评价公司盈利能力和股东权益回报水平,从财务角度评价企业绩效的一种经典方法。”由此可见,杜邦分析主要是用于企业的财务分析之中。
但是在电商中,杜邦分析常被用于寻找销售变化的细小因素之中。如图3-4所示,便是根据杜邦分析原理,将所有影响到销售额的量化指标都统计出来的一种常用分析方法。此种方法,有助于我们从细小的数据颗粒中找到影响销售变化的元素。
▲图3-4 销售变化的原因分析
03 转化
转化分析是电商、游戏等互联网行业的特定分析方法,在传统行业的零售分析中并不常见。转化分析常用于页面跳转分析、用户流失分析等业务场景。
转化分析的表现形式一般是选用漏斗模型,如图3-5所示,便是模拟了某电商店铺的流量转化情况,并以漏斗图的形式展现出来。
▲图3-5 电商常见的流量转化漏斗图
这张图模拟了从店铺的浏览商品人数到加购人数,然后生成订单、支付订单,直到最后支付成功的漏斗示意图。
从图3-5的示例中,反推“转化”分析方法,我们应该得到以下结论:
转化分析方法的前提,是我们需要首先确定一条“转化路径”(如图3-5左侧的路径所示),这条路径就是我们的“解题方法”,是决定我们接下来的分析能否达成目标的重要因素。
当“转化路径”确定后,我们需要把“路径”中的各个“节点”罗列出来,并把节点下的重要数据统计出来。
最后,根据路径把各节点的数据用漏斗图的形式表达出来。
同时,转化分析还可用于店铺微观方面的“转化”洞察。譬如在某一次店铺举行大促活动时,我们需要分析大促期间“活动二级页”的流量转化效果如何。此时,我们便可以参照如图3-6所示的漏斗模型。
▲图3-6 活动页效果分析的漏斗图
在以上案例中,我们将转化路径定义为“活动页→详情页→支付页面(下单)→支付成功(购买)”四个节点。然后统计每个页面的流量到达数量,于是得出如图3-6所示的漏斗图。
通过此图,可以清晰明确地诊断出此次活动二级页在“下单→付款”环节转化率仅40%,存在一定问题。在支付界面的流量跳失,很可能是价格过高所致。
本文摘编自《电商数据分析与数据化运营》,经出版方授权发布。
7. 如何对数据进行量化分析
对事物进行量化处理,最主要是建立一个合理的维度,达到这个度就怎样,没到这个度又怎样。每个公司的情况不一样,有些大公司的员工只做一件事情也有的制作半件的都有,而在一些刚创业起步,50人以内的公司,很多都是一人兼多职的。
因此如果没有一个好的合理的维度去定这个事物的数据,做的事情多的员工就会慢慢的没有积极性,对公司是不利的。比如说100万以下是正常要求,100-500万是一个一级维度,在这个维度里继续拿出多出的部分进行大比例分配给业务员,如100万的是2%提成,多出的按3%提成。
还有就是产品的单价是50元低价给到业务员,如果业务员卖出的产品比50高,就将高出的部分再进行50%或者更多的奖励,相信业务员都会尽最大努力去销售。再对每个单和每个月每个季度对每个业务员进行一次考核,符合管理规定的积一个维度,后面的都按维度来进行资金待遇分配。
相关信息
量化分析就是将一些不具体,模糊的因素用具体的数据来表示,从而达到分析比较的目的。人类对于股市波动规律的认知,是一个极具挑战性的世界级难题。量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指期货套利、商品期货套利、统计套利、算法交易,资产配置,风险控制等。
虽然量化分析可以帮助我们更加方便和直观地衡量风险和收益,但需要强调指出的是,美国华尔街顶级量化金融大师、哥伦比亚大学著名教授伊曼纽尔·德曼,在《数学建模如何诱骗了华尔街》一文中,毫无忌讳地承认根本不可能(通过数理分析方法)发明出一个能够预测股票价格将会如何变化的模型。
8. 2020年年度国内股票分析的基本方法有哪些
国内股票分析的基本方法:
1、K线图切线分析
切线分析是指按一定的方法和原则,在由股票价格的数据所绘制的图表中画出一条直线,然后根据这些直线的情况推测出证券价格的未来趋势。这些直线就称为切线。切线主要起支撑和压力的作用,支撑线和压力线向后的延伸位置对价格的波动起到一定的制约作用。
目前,画切线的方法有很多种,著名的有趋势线、通道线、黄金分割线、速度线等。
2、通道线形态分析
形态分析是根据价格图表中过去一段时间走过的轨迹形态来预测股票价格未来趋势的方法。在技术分析假设中,市场行为涵盖一切信息。价格走过的形态是市场行为的重要组成部分,是证券市场对各种信息感受之后的具体表现。
从价格轨迹的形态,我们可以推测出市场处于什么样的大的环境中,由此对我们今后的行为给予一定的指导。价格轨迹的形态有M头、W底、头肩顶、头肩底等。
(8)股票量化数据分析技巧扩展阅读:
前提条件
1、市场行为包容消化一切
技术分析者认为,能够影响某种证券价格的任何因素(不管是宏观的或是微观的)都反映在其证券的价格之中。研究影响证券价格的因素对普通投资者来说是不可能实现的,即使是经济学家对市场的分析也是不确定的。
因此,研究证券的价格就是间接的研究影响证券价格的经济基础。技术分析者通过研究价格图表和大量的辅助技术指标,让市场自己揭示它最可能的走势。
2、价格以趋势方式演变。
技术分析者通过经验的总结,认为证券的价格运动是以趋势方式演变的。研究价格图表的全部意义,就是要在一个趋势发生发展的早期,及时准确地把它揭示出来,从而达到顺应趋势交易的目的。
正是因为有趋势的存在,技术分析者通过对图表、指标的研究,发现趋势的即将发展的方向,从而确定买入和卖出股票的时机。
9. 股票投资分析的基本方法有哪些
你好,股票投资分析方法主要有如下三种:基本分析、技术分析、演化分析。
(1)、基本分析(Fundamental Analysis ):以企业内在价值作为主要研究对象,从决定企业价值和影响股票价格的宏观经济形势、行业发展前景、企业经营状况等方面入手(一般经济学范式),进行详尽分析以大概测算上市公司的投资价值和安全边际,并与当前的股票价格进行比较,形成相应的投资建议。基本分析认为股价波动轨迹不可能被准确预测,而只能在有足够安全边际的情况下“买入并长期持有”,在安全边际消失后卖出。
(2)、技术分析(Technical Analysis):以股价涨跌的直观行为表现作为主要研究对象,以预测股价波动形态和趋势为主要目的,从股价变化的K线图表与技术指标入手(数理或牛顿范式),对股市波动规律进行分析的方法总和。技术分析有三个颇具争议的前提假设,即市场行为包容消化一切;价格以趋势方式波动;历史会重演。国内比较流行的技术分析方法包括道氏理论、波浪理论、江恩理论等。
(3)、演化分析(Evolutionary Analysis):以股市波动的生命运动内在属性作为主要研究对象,从股市的代谢性、趋利性、适应性、可塑性、应激性、变异性、节律性等方面入手(生物学或达尔文范式),对市场波动方向与空间进行动态跟踪研究,为股票交易决策提供机会和风险评估的方法总和。演化分析从股市波动的本质属性出发,认为股市波动的各种复杂因果关系或者现象,都可以从生命运动的基本原理中,找到它们之间的逻辑关系及合理解释,并为构建科学合理的博弈决策框架,提供令人信服的依据。
本信息不构成任何投资建议,投资者不应以该等信息取代其独立判断或仅根据该等信息作出决策,如自行操作,请注意仓位控制和风险控制。
10. 散户如何做量化交易
量化交易是指投资者将交易策略的逻辑与参数经过电脑程序运算后,将交易策略系统化,然后通过电脑自动下单来完成交易。
在量化交易过程中,散户可以这样做:
1、根据个股的历史数据,进行多因子选股,比如,把市盈率、市净率、市销率等作为选股标准,选出一些价值被低估,或者处于合理区域的个股。
2、顺势交易,即在上涨的趋势中买入,在下跌的趋势中卖出。
3、进行合理的仓位管理,即采取漏斗形仓位管理法、矩形仓位管理法、金字塔形仓位管理法等,好应对个股后期的风险。
4、再根据个股的历史走势,寻找个股的支撑位和压力位,把它们作为止损、止盈点,即在压力位置,且获得收益的时候及时卖出;在跌破支撑位时,且股票亏损的时候及时卖出股票,避免更大的损失。