当前位置:首页 » 分析预测 » logistic回归分析股票R
扩展阅读
股票行情千股千评600667 2024-11-08 02:24:49
西藏水资源的股票价格 2024-11-08 02:07:45

logistic回归分析股票R

发布时间: 2022-09-20 08:27:21

㈠ Logistic回归分析的时候,R2(决定系数)非常小,为什么求高人指点!急!

你把不显著的变量去掉试试,或者直接用线性回归模型,很可能R2会提高的

㈡ logistic回归分析是什么

logistic回归分析是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。

logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同;

多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。

(2)logistic回归分析股票R扩展阅读:

Logistic回归模型的适用条件

1、因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。但是需要注意,重复计数现象指标不适用于Logistic回归。

2、残差和因变量都要服从二项分布。二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。

3、自变量和Logistic概率是线性关系

4、各观测对象间相互独立。

㈢ 如何用 R 做 logistic 回归

Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。 二值logistic回归: 选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。把你的自变量选到协变量的框框里边。 细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。那么我们为了模型的准确,就把这个交互效应也选到模型里去。我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。 然后在下边有一个方法的下拉菜单。默认的是进入,就是强迫所有选择的变量都进入到模型里边。除去进入法以外,还有三种向前法,三种向后法。一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。再下边的选择变量则是用来选择你的个案的。一般也不用管它。 选好主面板以后,单击分类(右上角),打开分类对话框。在这个对话框里边,左边的协变量的框框里边有你选好的自变量,右边写着分类协变量的框框则是空白的。你要把协变量里边的字符型变量和分类变量选到分类协变量里边去(系统会自动生成哑变量来方便分析,什么事哑变量具体参照前文)。这里的字符型变量指的是用值标签标注过得变量,不然光文字,系统也没法给你分析啊。选好以后,分类协变量下边还有一个更改对比的框框,我们知道,对于分类变量,spss需要有一个参照,每个分类都通过和这个参照进行比较来得到结果,更改对比这个框框就是用来选择参照的。默认的对比是指示符,也就是每个分类都和总体进行比较,除了指示符以外还有简单,差值等。这个框框不是很重要,默认就可以了。 点击继续。然后打开保存对话框,勾选概率,组成员,包含协方差矩阵。点击继续,打开选项对话框,勾选分类图,估计值的相关性,迭代历史,exp(B)的CI,在模型中包含常数,输出——在每个步骤中。如果你的协变量有连续型的,或者小样本,那还要勾选Hosmer-Lemeshow拟合度,这个拟合度表现的会较好一些。 继续,确定。 然后,就会输出结果了。主要会输出六个表。 第一个表是模型系数综合检验表,要看他模型的p值是不是小于0.05,判断我们这个logistic回归方程有没有意义。 第二个表示模型汇总表。这个表里有两个R^2,叫做广义决定系数,也叫伪R^2,作用类似于线性回归里的决定系数,也是表示这个方程能够解释模型的百分之多少。由于计算方法不同,这两个广义决定系数的值往往不一样,但是出入并不会很大。 在下边的分类表则表述了模型的稳定性。这个表最后一行百分比校正下边的三个数据列出来在实际值为0或者1时,模型预测正确的百分比,以及模型总的预测正确率。一般认为预测正确概率达到百分之五十就是良好(标准真够低的),当然正确率越高越好。 在然后就是最重要的表了,方程中的变量表。第一行那个B下边是每个变量的系数。第五行的p值会告诉你每个变量是否适合留在方程里。如果有某个变量不适合,那就要从新去掉这个变量做回归。根据这个表就可以写出logistic方程了:P=Exp(常量+a1*变量1+a2*变量2.。。。)/(1+Exp(常量+a1*变量1+a2*变量2.。。。))。如果大家学过一点统计,那就应该对这个形式的方程不陌生。提供变量,它最后算出来会是一个介于0和1的数,也就是你的模型里设定的值比较大的情况发生的概率,比如你想推算会不会治愈,你设0治愈,1为没有治愈。那你的模型算出来就是没有治愈的概率。如果你想直接计算治愈的概率,那就需要更改一下设定,用1去代表治愈。 此外倒数后两列有一个EXP(B),也就是OR值,哦,这个可不是或者的意思,OR值是优势比。在线性回归里边我们用标准化系数来对比两个自变量对于因变量的影响力的强弱,在logistic回归里边我们用优势比来比较不同的情况对于因变量的影响。举个例子。比如我想看性别对于某种病是否好转的影响,假设0代表女,1代表男,0代表不好转,1代表好转。发现这个变量的OR值为2.9,那么也就是说男人的好转的可能是女人好转的2.9倍。注意,这里都是以数值较大的那个情况为基准的。而且OR值可以直接给出这个倍数。如果是0,1,2各代表一类情况的时候,那就是2是1的2.9倍,1是0的2.9倍,以此类推。OR值对于方程没什么贡献,但是有助于直观的理解模型。在使用OR值得时候一定要结合它95%的置信区间来进行判断。 此外还有相关矩阵表和概率直方图,就不再介绍了。 多项logistic回归: 选择分析——回归——多项logistic,打开主面板,因变量大家都知道选什么,因变量下边有一个参考类别,默认的第一类别就可以。再然后出现了两个框框,因子和协变量。很明显,这两个框框都是要你选因变量的,那么到底有什么区别呢?嘿嘿,区别就在于,因子里边放的是无序的分类变量,比如性别,职业什么的,以及连续变量(实际上做logistic回归时大部分自变量都是分类变量,连续变量是比较少的。),而协变量里边放的是等级资料,比如病情的严重程度啊,年龄啊(以十年为一个年龄段撒,一年一个的话就看成连续变量吧还是)之类的。在二项logistic回归里边,系统会自动生成哑变量,可是在多项logistic回归里边,就要自己手动设置了。参照上边的解释,不难知道设置好的哑变量要放到因子那个框框里去。 然后点开模型那个对话框,哇,好恐怖的一个对话框,都不知道是干嘛的。好,我们一点点来看。上边我们已经说过交互作用是干嘛的了,那么不难理解,主效应就是变量本身对模型的影响。明确了这一点以后,这个对话框就没有那么难选了。指定模型那一栏有三个模型,主效应指的是只做自变量和因变量的方程,就是最普通的那种。全因子指的是包含了所有主效应和所有因子和因子的交互效应的模型(我也不明白为什么只有全因子,没有全协变量。这个问题真的很难,所以别追问我啦。)第三个是设定/步进式。这个是自己手动设置交互项和主效应项的,而且还可以设置这个项是强制输入的还是逐步进入的。这个概念就不用再啰嗦了吧啊? 点击继续,打开统计量对话框,勾选个案处理摘要,伪R方,步骤摘要,模型拟合度信息,单元格可能性,分类表,拟合度,估计,似然比检验,继续。打开条件,全勾,继续,打开选项,勾选为分级强制条目和移除项目。打开保存,勾选包含协方差矩阵。确定(总算选完了)。 结果和二项logistic回归差不多,就是多了一个似然比检验,p值小于0.05认为变量有意义。然后我们直接看参数估计表。假设我们的因变量有n个类,那参数估计表会给出n-1组的截距,变量1,变量2。我们我们用Zm代表Exp(常量m+am1*变量1+am2*变量2+。。。),那么就有第m类情况发生的概率为Zn/1+Z2+Z3+……+Zn(如果我们以第一类为参考类别的话,我们就不会有关于第一类的参数,那么第一类就是默认的1,也就是说Z1为1)。 有序回归(累积logistic回归): 选择菜单分析——回归——有序,打开主面板。因变量,因子,协变量如何选取就不在重复了。选项对话框默认。打开输出对话框,勾选拟合度统计,摘要统计,参数估计,平行线检验,估计响应概率,实际类别概率,确定,位置对话框和上文的模型对话框类似,也不重复了。确定。 结果里边特有的一个表是平行线检验表。这个表的p值小于0.05则认为斜率系数对于不同的类别是不一样的。此外参数估计表得出的参数也有所不同。假设我们的因变量有四个水平,自变量有两个,那么参数估计表会给出三个阈值a1,a2,a3(也就是截距),两个自变量的参数m,n。计算方程时,首先算三个Link值,Link1=a1+m*x1+n*x2,Link2=a2+m*x1+n*x2,Link3=a3+m*x1+n*x2,(仅有截距不同)有了link值以后,p1=1/(1+exp(link1)),p1+p2=1/(1+exp(link2)),p1+p2+p3=1/(1+exp(link3)),p1+p2+p3+p4=1.. 通过上边的这几个方程就能计算出各自的概率了。 Logistic回归到这里基本就已经结束了。大家一定要记熟公式,弄混可就糟糕了。

㈣ 如何在R语言中使用Logistic回归模型

Logistic回归在做风险评估时,一般采用二值逻辑斯蒂回归(Binary Logistic Regression)。以滑坡灾害风险评估为例。1、滑坡发生与否分别用0和1表示(1表示风险发生,0表示风险未发生);2、确定影响滑坡风险的影响因子,这个根据区域具体情况而定,一般包括:地层岩性、植被、降水、地貌、断层、人类活动等等。如果是其他风险的话也根据具体情况而定(咨询专家就可以知道)。3、构建回归分析的样本。Logistic回归也是统计学里面的内容,所以必须得构建统计分析的样本。以构建滑坡风险统计分析的样本为例,先找出滑坡发生的地区,同时计算滑坡发生地区的各个影响因子的指标值。再选择滑坡未发生的地区,同时计算滑坡未发生地区各个影响因子的指标值。这样,就构建了统计样本,自变量为各个影响因子的指标值,应变量为0和1,。把样本导入SPSS里面进行分析,就可以构建自变量和因变量之间的非线性关系模型,然后用这个模型继续求解其他区域滑坡风险的概率值。
希望我的答案对你能有帮助!

㈤ logistic回归的案例分析

关于富士康跳楼曲线的Logistic回归分析。
正常人都能知道这绝对不是偶然,至于这背后有什么?我一开始也不甚清楚。
然后一篇突如其来的实验报告被发还给我,然后看着我亲手绘制的磁滞回线。有了主意。
首先,我查到了有记载以来,所有富士康员工自杀的日期:
列出如下表格:(以07年6月18号,第一例自杀案例为原点,至今(10年5月25日)1072天) 自杀时间x/d 0 75 272 758 794 950 997 1003 1015 1023 1024 1024 1053 1051 1072 累计自杀人数y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 在MATLAB中容易做出散点图:

可见这是一个指数增长的曲线。
对此我认为自杀和流行病一样,自杀也是一种病,而且是一种可以传染的疾病。
因此其增长曲线与对数增长很接近。
对其做指数函数拟合:

General model Exp2:
f(x) = a*exp(b*x) + c*exp(d*x)
Coefficients (with 95% confidence bounds):
a = 7.569e-007 (-6.561e-006, 8.075e-006)
b = 0.01529 (0.006473, 0.0241)
c = 1.782 (0.5788, 2.984)
d = 0.001075 (2.37e-005, 0.002125)
Goodness of fit:
SSE: 8.846
R-square: 0.9684
Adjusted R-square: 0.9598
RMSE: 0.8968
可见相关度0.96也是非常高的。
然而和所有疾病一样,一旦其事件引起了人们的关注,则各方的反馈作用,将阻碍其继续上升。
因此,和很多流行病分析一样,该曲线很有可能呈S型。对于该曲线的分析,使用Logistic回归。
首先我们假设Logis(B,x)=F(x),之中B为参数数组,则由经验和可能的微分方程关系,回归曲线应该为
S(x)=m*Logis(B,x+t)/(n+Logis(B,x+t))格式
由于当Logis(B,x)较小时S(x)=Logis(B,x),则可以认为f(x)的参数可以直接引入S(x)作为一种近似,而对于m,n的确定,我以1为间隔,画出m*n=40*20的所有曲线,
选出其中最吻合的的一条(m=22 n=20 t=50):

㈥ Logistic回归分析计算方法

logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,为两分类变量,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。通过logistic回归分析,就可以大致了解到底哪些因素是胃癌的危险因素。
生态学中的虫口模型(亦即Logistic映射)可用来描述

x(n+1)=u*x(n)*(1-x(n)),u属于[0,4],x属于(0,1)这是1976年数学生态学家R. May在英国的《自然》杂志上发表的一篇后来影响甚广的综述中所提出的,最早的一个由倍周期分岔通向混沌的一个例子。后来经过Feigenbaum研究得出:一个系统一旦发生倍周期分岔,必然导致混沌。他还发现并确定了该系统由信周期分岔通向混沌的两个普适常数(也称为Feigenbaum常数)。对于一维 Logistic映射,研究的比较早也比较详细,比如该映射之所以产生混沌,有人归纳出它具有两个基本性质、逆瀑布、周期3窗口、U序列等等。但是一维Logistic映射仅有一个自由度,利用它只能产生一条线或一条曲线,而做图像,至少需要两个或以上个自由度,为此,孙海坚等人给出了LMGS定义。王兴元还扩展了LMGS定义,在此基础上,就可以分析2维及其以上的系统,分析图形与吸引子的结构特征,探讨了图形与吸引子之间的联系;并由一维可观察计算系统混沌定量判据的方法,计算了吸引子的 Lyapunov指数和Lyaounov维数。[1]二维 Logistic映射起着从一维到高维的衔接作用,对二维映射中混沌现象的研究有助于认识和预测更复杂的高维动力系统的性态。王兴元教授通过构造一次藕合和二次祸合的二维Logistic映射研究了二维Logistic映射通向混沌的道路,分析了其分形结构和吸引盆的性质,指出选择不同的控制参数,二维映射可分别按Feigenbaum途径等走向混沌,并且指出在控制参数空间中的较大的区域,其通向混沌的道路与Hopf分岔有关,在这些途径上可观察到锁相和准周期运动。二维滞后Logistic映射x(n+1)=y(n)y(N+1)=u*y(n)*(1-x(n)), u属于(0,2.28),[x,y]属于(0,1)该系统走向混沌的道路正是验证了二维Logistic映射与Neimark-Sacker分岔有密切的关系,对于研究其他的具有滞后的系统具有重要的意义。[1]

㈦ 用sas9.2拟合logistic 结果分析表中R是什么意思啊表上面写着R=1,服不符合曲线啊急求超人解答。

R称为相关系数或回归系数, 而R^2则是决定系数或复相关系数或复回归系数,一般R^2值要小于R的值, 但总的原则是: R或R^2的值范围在0~1之间, R或R^2的值越接近1拟合效果越好; 若R或R^2的值等于1则为优级(即线性函数关系).
在回归分析或相关分析中, R或R^2是衡量变量与参数(自变量)间的回归或相关的线性或拟合关系优劣的主要特征指标

㈧ 怎么用R构建分层logistic回归模型

自己看过一些资料后,确定r中不能像Sas一样在logistic回归程序中增加一个选项来实现分层logistic回归。可能的做法是将数据集按照分层变量拆分成几个亚数据集,然后再采用普通logistic回归来分析。这样来看的话,R相对Sas还是有一些局限的,细微的功能上不如Sas