当前位置:首页 » 分析预测 » 结合大数据股票分析法
扩展阅读
天业pvc股票代码 2024-11-25 12:37:54
景旺科技股票行情 2024-11-25 12:27:54
股票软件里资产分析 2024-11-25 12:22:17

结合大数据股票分析法

发布时间: 2022-10-07 23:33:39

❶ 大数据时代应该如何投资股票

给一篇关于【如何使用大数据进行A股行业投资】的教程给你参考一下~

好的投资,首先是选好行业

红杉资本曾经有一条著名的投资经验,大意是:好的投资,首先是选好赛道,其次是赛道上的选手。对于每天活跃于资本市场上的投资者而言,赛道所指的正是你正在投资、或者将要投资的那家公司它所在的行业,更直接的说,你投资于什么行业,投资于这个行业的哪家公司,决定了你最终能获得什么样的收益表现。

那么,红杉资本的这条投资经验是否适用于A股市场,并给我们带来可观的投资收益呢?本文试图通过量化分析交易回测来验证这一投资模式是否真正有效,所采用的数据取自于聚宽数据出品的JQData本地量化金融数据,通过梳理出自2010年以来A股市场上不同行业的发展情况,进一步构建出一个优质行业龙头组合,观察其从2015年股灾至今的收益表现。最终发现,这样一个优质行业的龙头组合,从股灾至今大幅跑赢了上证指数和沪深300指数高达30%的以上的收益率,可以说是超乎预期的。以下是具体分析过程。

2010 ~ 2017 沪深A股各行业量化分析

在开始各行业的量化分析之前,我们需要先弄清楚两个问题:

  • 第一,A股市场上都有哪些行业;

  • 第二,各行业自2010年以来的营收、净利润增速表现如何?

第一个问题:
很好回答,我们使用JQData提供的获取行业成分股的方法,输入get_instries(name='sw_l1')
得到申万一级行业分类结果如下:它们分别是:【农林牧渔、采掘、化工、钢铁、有色金属、电子、家用电器、食品饮料、纺织服装、轻工制造、医药生物、公用事业、交通运输、房地产、商业贸易、休闲服务、综合、建筑材料、建筑装饰、电器设备、国防军工、计算机、传媒、通信、银行、非银金融、汽车、机械设备】共计28个行业。

第二个问题:

要知道各行业自2010年以来的营收、净利润增速表现,我们首先需要知道各行业在各个年度都有哪些成分股,然后加总该行业在该年度各成分股的总营收和净利润,就能得到整个行业在该年度的总营收和总利润了。这部分数据JQData也为我们提供了方便的接口:通过调用get_instry_stocks(instry_code=‘行业编码’, date=‘统计日期’),获取申万一级行业指定日期下的行业成分股列表,然后再调用查询财务的数据接口:get_fundamentals(query_object=‘query_object’, statDate=year)来获取各个成分股在对应年度的总营收和净利润,最后通过加总得到整个行业的总营收和总利润。这里为了避免非经常性损益的影响,我们对净利润指标最终选取的扣除非经常性损益的净利润数据。

    我们已经获取到想要的行业数据了。接下来,我们需要进一步分析,这些行业都有什么样的增长特征。

    我们发现,在28个申万一级行业中,有18个行业自2010年以来在总营收方面保持了持续稳定的增长。它们分别是:【农林牧渔,电子,食品饮料,纺织服装,轻工制造,医药生物,公用事业,交通运输,房地产,休闲服务,建筑装饰,电气设备,国防军工,计算机,传媒,通信,银行,汽车】;其他行业在该时间范围内出现了不同程度的负增长。

    那么,自2010年以来净利润保持持续增长的行业又会是哪些呢?结果是只有5个行业保持了基业长青,他们分别是医药生物,建筑装饰,电气设备,银行和汽车。(注:由于申万行业在2014年发生过一次大的调整,建筑装饰,电气设备,银行和汽车实际从2014年才开始统计。)

    从上面的分析结果可以看到,真正能够保持持续稳定增长的行业并不多,如果以扣非净利润为标准,那么只有医药生物,建筑装饰,电气设备,银行和汽车这五个行业可以称之为优质行业,实际投资中,就可以只从这几个行业中去投资。这样做的目的是,一方面,能够从行业大格局层面避免行业下行的风险,绕开一个可能出现负增长的的行业,从而降低投资的风险;另一方面,也大大缩短了我们的投资范围,让投资者能够专注于从真正好的行业去挑选公司进行投资。

    「2010-2017」投资于优质行业龙头的收益表现


    选好行业之后,下面进入选公司环节。我们知道,即便是一个好的行业也仍然存在表现不好的公司,那么什么是好的公司呢,本文试图从营业收入规模和利润规模和来考察以上五个基业长青的行业,从它们中去筛选公司作为投资标的。

    1、按营业收入规模构建的行业龙头投资组合

    首先,我们按照营业收入规模,筛选出以上5个行业【医药生物,建筑装饰,电气设备,银行和汽车】从2010年至今的行业龙头如下表所示:


    结论


    通过以上行业分析和投资组合的历史回测可以看到:

    • 先选行业,再选公司,即使是从2015年股灾期间开始投资,至2018年5月1号,仍然能够获得相对理想的收益,可以说,红杉资本的赛道投资法则对于一般投资者还是比较靠谱的。

    • 在构建行业龙头投资组合时,净利润指标显著优于营业收入指标,获得的投资收益能够更大的跑赢全市场收益率

    • 市场是不断波动的,如果一个投资者从股灾期间开始投资,那么即使他买入了上述优质行业的龙头组合,在近3年也只能获得12%左右的累计收益;而如果从2016年5月3日开始投资,那么至2018年5月2日,2年时间就能获得超过50%以上的收益了。所以,在投资过程中选择时机也非常重要~

❷ 如何利用网络上的现成大数据来进行超短线炒股

我们利用网络大数据分析技术,从互联网上检索最热的关键词,然后从关键词中检出相对应的股票名称或代码,依据各类大数据分析加权系数算法,选出优选股。\n\n搜索指数:\n\n 搜索指数是以搜索引擎海量网民行为数据为基础的数据分享平台,是当前互联网乃至整个数据时代最重要的统计分析平台之一,自发布之日便成为众多企业营销决策的重要依据。搜索指数能够告诉用户:某个关键词在搜索引擎上的搜索规模有多大,一段时间内的涨跌态势以及相关的新闻舆论变化,关注这些词的网民是什么样的,分布在哪里,同时还搜了哪些相关的词。例如index..com \n\n新闻热度:\n\n 10大新闻网站的财经频道每天都在报道上市企业和市场情况,爬虫根据财经首页的页面进行板块和行业等数据进行分析热门股票近日的曝光率。\n\n评论喜好:\n\n 股民喜欢在股吧和贴吧进行评论,爬虫根据网民发贴的情绪化词汇进行判断,出现负面词汇如不文明用语时,进行必要的扣分等操作。\n\n自选股关注度:\n\n 软件对用户自选股进行统计,关注人数高的股票自然会被纳入热门股票之列。\n\n资金流向:\n\n 软件即时跟踪股票的资金流向,特别关注庄家的大资金流向,对其拉升等动作进行大数据判断。\n\n图形分析:\n\n 软件对图形分析做了较多的大数据资料,并加入了自我学习的能力,如判断历史上的黄金坑,判断双底,计算斜率等。\n\n综合动能:\n\n 除了以上指标,软件还结合传统的MACD\KDJ等数据,按不同的指标进行打分,最终得出动能分。然后即时对高分股票按历史数据进行判断,推荐出最合适的股票供用户参考,当动能衰减时则会被沽出。\n\n\n\n 将软件停留在在仓界面,会自动更新股股价及进行买卖指令的操作。\n\n\n\n

❸ 可以利用大数据炒股吗

大数据可以用于股票交易,所谓大数据,就是一个新的分析概念,利用新的系统、新的工具、新的模型来挖掘大量动态的、可持续的数据,从而获得具有洞察力和新价值的东西。大数据已经在一些金融工具中有所体现,大数据会将股票之前的数据全都发布出来,股民可以根据这只股票之前的数据来进行对比。

其实大数据只能说是个趋势,我们可以通过打数据让投资者能够有一个参考性,但不能够过度依赖大数据,毕竟着只是数据,这些数据是死的,而股市却是千变万化的,我们不能过度的依赖大数据得出的分析与结论,大数据也只是作为一个参考数据。世事无绝对,更何况是股票,可能上一秒还是盈利的状态,但是下一秒就已经处于亏损了,不少人也因为炒股倾家荡产,所以这边还是要提醒大家一下,谨慎行事,不要盲目跟风。

❹ 股票数据分析方法

股票价格的涨跌,简单来说,供求决定价格,买的人多价格就涨,卖的人多价格就跌。做成买卖不平行的原因是多方面的,影响股市的政策面、基本面、技术面、资金面、消息面等,是利空还是利多,升多了会有所调整,跌多了也会出现反弹,这是不变的规律。

❺ 股票分析有几种分析法

从专业上来讲、,股票有两类分析法,基础分、析法和技术分析法。

基础分析法就是根据、宏观形势,政策,行业行情,公司、实力等等能够影响到股市的各类因素,综合分析,对股票的中长期发展能够准确的预测技术分析法就是根据各种指标图,数据,从数理的角度来分析,适用于股票的短期判断炒股没有必胜的技巧,只能靠2种分析方法相辅相成。

股价技术分析和基本分析都认为股价是由供求关系所决定。基本分析主要是根据对影响供需关系种种因素的分析来预测股价走势,而技术分析则是根据股价本身的变化来预测股价走势。



(5)结合大数据股票分析法扩展阅读:

股票价格指数和平均数仅仅为人们提供了一种衡量股票价格变动历史的工具,然而,人们更关心的是如何预测股票价格的未来趋势,以及买卖股票的适当时机。

为了判断股票现行股价的价位是否合理并描绘出它长远的发展空间,而技术分析主要是预测短期内股价涨跌的趋势。通过基本分析我们可以了解应购买何种股票,而技术分析则让我们把握具体购买的时机。

在时间上,技术分析法注重短期分析,在预测旧趋势结束和新趋势开始方面优于基本分析法,但在预测较长期趋势方面则不如后者。大多数成功的股票投资者都是把两种分析方法结合起来加以运用。他们用基本分析法估计较长期趋势,而用技术分析法判断短期走势和确定买卖的时机。

❻ 如何用大数据分析股票

首先要自己建立模型才行。

❼ 如何用大数据炒股

方法/步骤
1
下载,安装app。 网络搜索 网络股市通,并根据手机选择版本安装(安卓的安装安卓的,iphone安装ios版本)
2

安装,app这个不多说了。打开app,界面如图所示。可以看到有自选股、资讯、智能选股、行情、我 五个标签页,自选股、行情和“我"就不多说了,炒股的都知道,我们主要要看的是 资讯和智能选股两个标签页的内容
3

打开“资讯”,里面是根据网络大数据筛选出来的一些可能对股市有比较大影响的新闻。虽然现在新闻到处都能看到,但是对于股市新手来说,分辨哪些新闻比较重要是一件十分困难的事情,我一般是看这里的概念热点,对于追热点非常有用。
4

下面介绍最最有用的“智能选股”,打开,可以看到有“最新热点”、“异动个股”、“优选公告”3项
5
最新热点,这里综合了最近搜索最热的话题新闻,并且列出了相关的股票,非常有价值,可以据此布局;
6
异动个股,这里整理出了盘中资金变化较大,有可能大涨大跌的股票,适合作参考
7

优选公告,这是我最看重的地方了。 新手对于上市公司的公告,看不懂,看懂了也不知道对于股票走势有什么影响。而这里则根据历史数据,统计出了该股票同类公告引起的涨跌,很准的。

❽ 利用大数据炒股会赚吗

随着科学技术的发展,现在很多炒股软件都可以方便快捷地找到上市公司的关键数据。用大数据分析找出大股东的持仓成本,就等于看到了经销商的底牌。购买价格接近或低于市场平均持仓成本。利润机会越大,安全系数越高。

因为大数据分析人们的常识性需求或一些习惯性行为,只能通过多次或多次发生的常见行为事件找出一些规律。上述行为事件是相对固定时间或基本需求或习惯的单一行为的结果。作为股东,没有人能够预测未来。我们不否认这一点。然而,很少有人会否认每个人都可以回顾历史。我们不知道未来会上升还是下降。我们不知道如何波动。然而,如果一个好故事讲得很辛苦,说书人肯定会得到好处。粉丝越多,他得到的好处就越多。

❾ 基于微信大数据的股票预测研究

基于微信大数据的股票预测研究
大数据是近些年来的热门话题,无论国际上还是国内,影响很大。经济学、政治学、社会学和许多科学门类都会发生巨大甚至是本质上的变化和发展,进而影响人类的价值体系、知识体系和生活方式。而全球经济目前生成了史无前例的大量数据,如果把每天产生的大量数据比作神话时期的大洪水是完全正确的,这个数据洪流是我们前所未见的,他是全新的、强大的、当然,也是让人恐慌但又极端刺激的。
而我所分享的话题,正是在互联网环境下,如何利用大数据技术,进行股票预测的研究。–今天,我想分享我认为有意义的四点。
1.大数据下的商业预测
根据大数据,我们可以有效地进行故障、人流、流量、用电量、股票市场、疾病预防、交通、食物配送、产业供需等方面的预测。而本文我们所关心的内容是股票市场的预测。
大数据的核心是预测,预测依赖于对数据的分析。那么分析的方法是否是基于随机采样的结果而设计的,这样的分析方法是否会有误差?
从传统认识上,由于资源和科技的局限,如人和计算资源受限、从计算机处理能力来讲无法处理全部数据来获取人们所关注的结果。因此随机采样应运而生,通过所选取的个体来代表全体,如使用随机抽取的方式来使得推论结果更科学。但既然提到了大数据,它是资源发展到一定程度、以及技术发展到一定阶段产生的一个新的认识。如同电力的出现,使人类进入了一个快速发展阶段,大数据也一样,它的含义是全体样本,从整体样本来做推论。在本文大数据的含义是所有股票在整个社交网络上的流动信息,从数据源上讲,本文没有采用所有社交网络上的数据,只分析了微信这个最具代表性的社交媒体作为信息源。
互动数据能反映用户情绪,搜索数据能反映用户的关注点和意图,在股市预测时这两种数据哪种更具有参考价值?
我认为都有价值,互动数据反映了用户对某一特定股票的喜好和厌恶,可以简单描述为对该股票的操作是继续持有还是卖出;而搜索数据则代表用户在收集该股票信息的过程,它是关注度的概念,某只股票搜索度高则意味着消息的影响力大。互动代表着方向,搜索代表着振幅。
我们知道这两种数据得出的结论会有差异,您是如何平衡这两种数据反映的情况来进行预测的?
正如上一个问题里提到的,如果是股票推荐,买进卖出等原则问题,则应该考虑互动数据,但如果已经买到手了,搜索数据可以提供一个幅度的概念,类似债券评级A级、AA级、AAA级等,供投资者参考,因为不同投资者对风险的承受度是不同的。
将股票和市场的消息整理成140字的短消息发布,是否意味着主要发布渠道是微博?现在微信公众号很火,有没有考虑通过这个渠道也发布消息?
事实上,信息传播的方式很多,微信作为新媒体当然影响力不容小觑,但目前技术投入最小的还是邮件、短信等方式,未来会考虑使用公众号来推送股票和市场消息。
如果在未来通过微信公众号推送消息,那么推送的消息会不会作为数据来源被再次采集?这会有多大的影响?
会被采集,但互联网上的每日关于个股的信息数量会达到很大,该推送会增加推荐股票1点权重,每只股票的权重成百上千,因此影响极小。
数据来源是微信公众号,除了准确性的考虑之外,是否还考虑过这样收集数据会较少触犯个人隐私?
从法律角度来看,搜索微信或其他个人聊天记录,是侵犯个人隐私权的,因此如果腾讯开放了这样的接口,每个公民都可以对这样的行为进行投诉、抗议、甚至进行法律起诉直至其改正过错、赔偿损失的。
这样是否意味着即使存在违法的行为,其结果也是由腾讯来承担,而我们作为数据的使用方不需要承担任何法律责任?
在整个社会,我们作为系统技术提供方,应恪守大数据的伦理道德,遵守国家法律,如侵犯个人隐私,系统不会采集,谷歌有一句座右铭“谷歌不作恶”,本文提到的系统也一样。
2.基于大数据进行股票推荐实验
股票的及时度反应了微信文章所发布的时效性,及时度越高,数据价值就越大。
股票的热度反应了当前某只股票被关注的频度,关注频度越大,上涨的可能性越高。

数据的完整性:我们采用循环的方式对所有深沪两地发行约2236只股票(创业版除外)在微信搜索网站上的搜索结果进行保存。
数据的一致性:文件格式由负责保存数据文件的程序决定,单一的流程保障了文件的一致性。
数据的准确性:由于所分析的订阅号文章的是由微信公共平台的公众号所提供,在一定程度上杜绝了虚假消息对于预测系统的破坏。
数据的及时性:考虑到磁盘读写以及采集程序所处的网络带宽,以及搜索引擎对于采集程序的屏蔽,程序中采集两条信息之间间隔了5秒,因此理论上11180秒(3.1个小时)可收集完当日推荐所需要的数据。对于每个交易日,在9点-9点30分之间采集所有数据,需要7台以上的设备可达到最佳效果。本次试验受限于试验设备,在一台设备上,交易日每天早六时开始进行数据采集,也满足及时性要求。
数据分析:查看三个高优先级的股票,该股票当日的开盘价与收盘价,再与当日(2015-4-8)上证综指进行比较,可得在收益上该算法是优于上证综指为样本的整体股票的股价差收益的。
实验结论:按照上述方式,系统每天推荐出当日股票,在开盘时进行买进,在第二个交易日进行卖出。经过一个月21个交易日(2015-3-1至2015-3-31),系统的收益为20%/月。通过微信搜索公众号来预测市场走势和投资情绪呈现出正相关性,因此可以作为股票甄选的因子。
3.股票预测的大数据发展趋势
网络数据分成三种:
一是浏览数据,主要用于电商领域的消费者行为分析,浏览数据反映了用户每一步的访问脚步,进一步刻画出用户的访问路径,分析不同页面的跳转概率等。
二是搜索数据,主要指搜索引擎记录的关键词被搜索频次的时间序列数据,能反映数亿用户的兴趣、关注点、意图。
三是互动数据,主要是微博、微信、社交网站的数据,反映用户的倾向性和情绪因素。
2013年诺贝尔经济学奖得主罗伯特?席勒的观点被无数采访对象引述。席勒于上世纪80年代设计的投资模型至今仍被业内称道。在他的模型中,主要参考三个变量:投资项目计划的现金流、公司资本的估算成本、股票市场对投资的反应(市场情绪)。他认为,市场本身带有主观判断因素,投资者情绪会影响投资行为,而投资行为直接影响资产价格。
计算机通过分析新闻、研究报告、社交信息、搜索行为等,借助自然语言处理方法,提取有用的信息;而借助机器学习智能分析,过去量化投资只能覆盖几十个策略,大数据投资则可以覆盖成千上万个策略。
基于互联网搜索数据和社交行为的经济预测研究,已逐渐成为一个新的学术热点,并在经济、社会以及健康等领域的研究中取得了一定成果。在资本市场应用上,研究发现搜索数据可有效预测未来股市活跃度(以交易量指标衡量)及股价走势的变化。
对于搜索数据:互联网搜索行为与股票市场的关联机理。这个研究属于行为金融与互联网的交叉领域,其原理是:股票量价调整是投资者行为在股票市场上的反应;与此同时,投资者行为在互联网搜索市场也有相应地行为迹象,我们要做到是:找到互联网搜索市场中领先于股票交易的行为指标,综合众多投资者的先行搜索指标,对未来的股票交易做出预判。
如同天气预报那样,不断优化模型、灌入海量信息,然后给出结果。并且在处理的信息中,有80%是“非结构化”数据,例如政策文件、自然事件、地理环境、科技创新等,这类信息通常是电脑和模型难以消化的。采用了语义分析法,可以将互动数据里的金融对话量化为“-1(极度看空)”到“1(极度看多)”之间的投资建议,通过分析互动数据的数据文本,作为股市投资的信号。
4.正在发生的未来
大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的将来。
大数据在实用层面的影响很广泛,解决了大量的日常问题。大数据更是利害攸关的,它将重塑我们的生活、工作和思维方式。在某些方面,我们面临着一个僵局,比其他划时代创新引起的社会信息范围和规模急剧扩大所带来的影响更大。我们脚下的地面在移动。过去确定无疑的事情正在受到质疑。大数据需要人们重新讨论决策、命运和正义的性质。拥有知识曾意味着掌握过去,现在则意味着能够预测未来。
大数据并不是一个充斥着算法和机器的冰冷世界,其中仍需要人类扮演重要角色。人类独有的弱点、错觉、错误都是十分必要的,因为这些特性的另一头牵着的是人类的创造力、直觉和天赋。这提示我们应该乐于接受类似的不准确,因为不准确正是我们之所以为人的特征之一。就好像我们学习处理混乱数据一样,因为这些数据服务的是更加广大的目标。必将混乱构成了世界的本质,也构成了人脑的本职,而无论是世界的混乱还是人脑的混乱,学会接受和应用他们才能得益。
我相信,利用基础数据、搜索数据、互动数据再进行加权计算,可以对所有股票进行大数据遴选,从而给出投资建议。我认为,我们的肉身刚刚步入大数据时代,但我们的精神还滞留在小数据、采样思维之中,率先用理性击碎固有思维的人,也将率先获得大数据带来的益处。

❿ 2020年年度国内股票分析的基本方法有哪些

国内股票分析的基本方法:

1、K线图切线分析

切线分析是指按一定的方法和原则,在由股票价格的数据所绘制的图表中画出一条直线,然后根据这些直线的情况推测出证券价格的未来趋势。这些直线就称为切线。切线主要起支撑和压力的作用,支撑线和压力线向后的延伸位置对价格的波动起到一定的制约作用。

目前,画切线的方法有很多种,著名的有趋势线、通道线、黄金分割线、速度线等。

2、通道线形态分析

形态分析是根据价格图表中过去一段时间走过的轨迹形态来预测股票价格未来趋势的方法。在技术分析假设中,市场行为涵盖一切信息。价格走过的形态是市场行为的重要组成部分,是证券市场对各种信息感受之后的具体表现。

从价格轨迹的形态,我们可以推测出市场处于什么样的大的环境中,由此对我们今后的行为给予一定的指导。价格轨迹的形态有M头、W底、头肩顶、头肩底等。

(10)结合大数据股票分析法扩展阅读:

前提条件

1、市场行为包容消化一切

技术分析者认为,能够影响某种证券价格的任何因素(不管是宏观的或是微观的)都反映在其证券的价格之中。研究影响证券价格的因素对普通投资者来说是不可能实现的,即使是经济学家对市场的分析也是不确定的。

因此,研究证券的价格就是间接的研究影响证券价格的经济基础。技术分析者通过研究价格图表和大量的辅助技术指标,让市场自己揭示它最可能的走势。

2、价格以趋势方式演变。

技术分析者通过经验的总结,认为证券的价格运动是以趋势方式演变的。研究价格图表的全部意义,就是要在一个趋势发生发展的早期,及时准确地把它揭示出来,从而达到顺应趋势交易的目的。

正是因为有趋势的存在,技术分析者通过对图表、指标的研究,发现趋势的即将发展的方向,从而确定买入和卖出股票的时机。