当前位置:首页 » 分析预测 » 股票的因子分析
扩展阅读
网上买基金手续费 2025-01-23 07:45:49
梦到买股票输了 2025-01-23 07:27:45

股票的因子分析

发布时间: 2022-11-01 22:15:04

⑴ 因子分析法如何确定主成分及各个指标的权重

如果使用因子分析的目的在于计算权重,此时可使用旋转后方差解释率值计算主成分权重。

比如提取2个因子,旋转后的方差解释率分别是39.759%,24.061%,旋转后累积方差解释率为63.820%。那么归一化(即除累积方差解释率)即得到权重,计算如下表:

⑵ 因子分析的结果怎么判断好坏

因子分析结果的方法和过程如下:
1、因子的提取和旋转
(1) 确定您的因子分析的目的之前运行的程序和解释输出。阿因子分析常见的用途是定义一组尺寸集(因素)对现有的基本措施。例如,假设您要定义一到,旨在衡量一个人的政治态度调查问卷的答复确定的基本因素。你的假设可能是一个潜在的一些因素有助于形成对政治和政府的态度。

(2) 检查您的因子提取输出。因子提取是第一次两个因素分析阶段,第二个因素是轮换。提取有助于找出潜在因素。通过检查你确定你的输出两部分:初始特征值和卵石这个阴谋。特征值衡量的是一组特殊因素解释措施的变异量。一个有用的指引,是包括利用特征值大于1的因素。
(3) 把你的注意卵石情节,一对特征值的相对大小的图形显示。保留所有因素在急剧下降的阴谋的一部分特征值。假设在这个例子中,你有这样三个特征值的阴谋,他们都大于1。这意味着你有三个因素。
(4) 进行了三个因素三要素旋转提取。统计旋转操纵的因素,使他们更有意义。您的统计软件或统计指南将提供关于如何进行的一个因素轮换步骤。旋转运行的因素会产生额外的输出。

2、结构因素分析
(1) 在检查的因素轮换您的输出矩阵的一部分相关的模式。这个矩阵将显示相关评分,或因素负荷量,每个变量之间的基本因素。因素负荷量高的项目 - 与0.300和1.00之间(例如加或减)都与相应的因素。
(2) 确定你的三个因素的措施,每个呈正相关。您可能会发现一些项目,因为可以在低负载的所有因素因素排除。
(3) 基于高因素负荷量,名称或标签的三个因素每个项目的内容。

因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量。比如,如果要测量学生的学习积极性,课堂中的积极参与,作业完成情况,以及课外阅读时间可以用来反应积极性。而学习成绩可以用期中,期末成绩来反应。

⑶ 因子分析法和主成分分析法的区别与联系是什么

联系:因子分析法和主成分分析法都是统计分析方法,都要对变量标准化,并找出相关矩阵。区别:在主成分分析中,最终确定的新变量是原始变量的线性组合,因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系。
1.因子分析法通过正交变换,将一组可能具有相关性的变量转换为一组线性不相关的变量,称为主成分。它主要用于市场研究领域。在市场研究中,研究人员关注一些研究指标的整合或组合。这些概念通常通过分数来衡量。人口学、数量地理学、分子动力学模拟、数学建模、数学分析等学科。因子分析和主成分分析都是统计分析方法,都需要对变量进行标准化,找出相关矩阵。
2.因子分析可以在许多变量中发现隐藏的代表性因素。主成分分析的原理是尝试将原始变量重新组合成一组新的独立综合变量。因子分析在主成分分析的基础上增加了一个旋转函数。这种轮换的目的是更容易地命名和解释因素的含义。如果研究的重点是指标与分析项目之间的对应关系,或者想要对得到的指标进行命名,建议使用因子分析。
3.主成分分析法是根据实际需要,尽量选取尽可能少的求和变量,以反映原始变量的信息。这种统计方法称为主成分分析或主成分分析,这也是一种处理降维的数学方法。主成分分析试图用一套新的不相关的综合指标取代原有指标。因子分析是社会研究的有力工具,但它不能确定一项研究中有多少因素。当研究中选择的变量发生变化时,因素的数量也会发生变化。
拓展资料:霍特林将这种方法推广到随机向量的情况。信息的大小通常由方差或方差的平方和来衡量。因子分析最早由英国心理学家C.E.斯皮尔曼提出。他发现学生在不同科目的成绩之间有一定的相关性。一门学科成绩好的学生往往在其他学科成绩更好,因此他推测是否有一些潜在的共同因素或一些一般的智力条件影响学生的学业成绩。

⑷ 因子分析法的优缺点

它的优缺点是相对主成分分析法而言的
因子分析法与主成分分析法都属于因素分析法,都基于统计分析方法,但两者有较大的区别:主成分分析是通过坐标变换提取主成分,也就是将一组具有相关性的变量变换为一组独立的变量,将主成分表示为原始观察变量的线性组合;而因子分析法是要构造因子模型,将原始观察变量分解为因子的线性组合。通过对上述内容的学习,可以看出因子分析法和主成分分析法的主要区别为:
(1)主成分分析是将主要成分表示为原始观察变量的线性组合,而因子分析是将原始观察变量表示为新因子的线性组合,原始观察变量在两种情况下所处的位置不同。
(2)主成分分析中,新变量Z的坐标维数j(或主成分的维数)与原始变量维数相同,它只是将一组具有相关性的变量通过正交变换转换成一组维数相同的独立变量,再按总方差误差的允许值大小,来选定q个(q<p)主成分;而因子分析法是要构造一个模型,将问题的为数众多的变量减少为几个新因子,新因子变量数m小于原始变量数P,从而构造成一个结构简单的模型。可以认为,因子分析法是主成分分析法的发展。
(3)主成分分析中,经正交变换的变量系数是相关矩阵R的特征向量的相应元素;而因子分析模型的变量系数取自因子负荷量,即。因子负荷量矩阵A与相关矩阵R满足以下关系:
其中,U为R的特征向量。
在考虑有残余项ε时,可设包含εi的矩阵ρ为误差项,则有R − AAT = ρ。
在因子分析中,残余项应只在ρ的对角元素项中,因特殊项只属于原变量项,因此,的选择应以ρ的非对角元素的方差最小为原则。而在主成分分析中,选择原则是使舍弃成分所对应的方差项累积值不超过规定值,或者说被舍弃项各对角要素的自乘和为最小,这两者是不通的。

⑸ 因子分析法如何确定主成分及各个指标的权重

(1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。

(2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。

(3)写出主因子得分和每个主因子的方程贡献率。 Fj =β1j*X1 +β2j*X2 +β3j*X3 + ……+ βnj*Xn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。

(4)求出指标权重。 ωi=[(m∑j)βij*ej]/[(n∑i)(m∑j)βij*ej],ωi就是指标Xi的权重。

(5)股票的因子分析扩展阅读

产品特点


1、操作简便

界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

2、编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计方法的各种算法,即可得到需要的统计分析结果。

对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

3、功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。



⑹ 因子分析旋转后,不同类财务指标如何命名

因子分析在很多学科都有广泛的应用。今天草堂君想介绍的是因子分析在股票评价(选股)上的分析应用,而且是我们国家的股票市场。中国股市在全球各大股票市场中保持着“中国特色”,这是由中国特色的社会主义经济制度决定的。大家可以回想14年到16年的股市涨跌剧情就明白中国的事物都会或多或少带有浓浓的中国特色,中国股票价格波动的研究同样应该如此。其实,对于股票价格的波动与涨跌研究,国外学者提出过很多理论、方法和模型,例如,MM理论、CAPM模型、OPM理论和现金流量折现法(DCF)等等,都无一例外的被证明不太适用于中国股市的股票价格研究,想想有些上市公司负债率都达到78%了,股票价格还高的买不起。

虽然很多奇怪的中国股市现象屡见不鲜,但是股票的投资价值最终由上市公司运营状况和发展前景决定,这一点在大范围和长时间来看是没错的。投资者了解上市公司运营情况最直接的途径是上市公司披露的财务报表,发布的财务报表漂亮,股票价格很可能会马上迎来上涨。例如,中国B2C电商巨头京东公司刚刚发布完2017年第一季度的该有盈利消息的财务报表,其股票价格马上迎来高达7.38%的上涨。

财务报表是一家公司财务状况和运营状况的全面反映,以季度、半年和全年的形式向外发布,这些数据信息都是投资者能够获得的。可是财务报表中所反映的指标信息非常多,高达几十项,普通投资者想要全部搞清楚是非常困难的,甚至指标之间还会出现矛盾。如果投资者只考虑其中某些指标,又会出现信息遗漏。因子分析能够根据指标之间的相关性,提取公因子,然后利用公因子对股票进行评估,找出财务上表现良好的上市公司,为投资提供指导。

⑺ 通过因子分析可以实现的目的是什么

通过因子分析可以实现的目的是将多个实测变量转换为少数几个综合指标(或称潜变量),它反映一种降维的思想。通过降维将相关性高的变量聚在一起,从而减少需要分析的变量的数量,而减少问题分析的复杂性。用来确定维度数量,对标体系的维度由主观来做判断。

因子分析的内容:

因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。

他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。

将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

⑻ 国泰安数据库 股票市场类型

P9705:创业板;P9706:综合A股市场;P9707:综合B股市场;P9709:综合A股和创业板; P9710:综合AB股和创业板;P9711:科创板;P9712:综合A股和科创板;P9713:综合AB股和科创板;P9714:综合A股和创业板和科创板;P9715:综合AB股和创业板和科创板。

⑼ 因子分析综合得分为正、负数的含义是什么综合得分结果为什么会有正数和负数呢,他们所台标的意义又是什么

只是相对的,不是代表真正的负数。载荷为负表明这个项目与这个因子呈负相关。

因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子,以较少的几个因子反映原资料的大部分信息。


(9)股票的因子分析扩展阅读

因子分析与主成分分析的区别:

主成分分析是试图寻找原有变量的一个线性组合。这个线性组合方差越大,那么该组合所携带的信息就越多。也就是说,主成分分析就是将原始数据的主要成分放大。

因子分析,它是假设原有变量的背后存在着一个个隐藏的因子,这个因子可以可以包括原有变量中的一个或者几个,因子分析并不是原有变量的线性组合。

⑽ 因子分析法的分析步骤

因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。
(i)因子分析常常有以下四个基本步骤:
⑴确认待分析的原变量是否适合作因子分析。
⑵构造因子变量。
⑶利用旋转方法使因子变量更具有可解释性。
⑷计算因子变量得分。
(ii)因子分析的计算过程:
⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。
⑵求标准化数据的相关矩阵;
⑶求相关矩阵的特征值和特征向量;
⑷计算方差贡献率与累积方差贡献率;
⑸确定因子:
设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;
⑹因子旋转:
若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。
⑺用原指标的线性组合来求各因子得分:
采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。
⑻综合得分
以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。
F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )
此处wi为旋转前或旋转后因子的方差贡献率。
⑼得分排序:利用综合得分可以得到得分名次。
在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:
· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。
· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。
· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。
如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。