⑴ 数据包络分析(DEA)方法
⑵ 数据包络分析有什么应用
《数据包络分析模型与方法》主要介绍数据包络分析基础层面的工作,主要包括作者的博士学位论文(1999)、博士后出站报告(2001)的核心内容,并概括介绍了作者2001-2009年的主要工作。可供数学系、管理系、经济系的本科生、研究生和教师使用,也适合经济、管理领域从事数据分析和评价的工作人员参考。
⑶ 什么是DEA,数据包络分析法相关材料有吗
数据包络分析(DEA)简介
在人们的生产活动和社会活动中常常会遇到这样的问题:经过一段时间之后,需要对具有相同类型的部门或单位(称为决策单元)进行评价,其评价的依据是决策单元的“输入”数据和“输出”数据,输入数据是指决策单元在某种活动中需要消耗的某些量,例如投入的资金总额,投入的总劳动力数,占地面积等等;输出数据是决策单元经过一定的输入之后,产生的表明该活动成效的某些信息量,例如不同类型的产品数量,产品的质量,经济效益等等.再具体些说,譬如在评价某城市的高等学校时,输入可以是学校的全年的资金,教职员工的总人数,教学用房的总面积,各类职称的教师人数等等;输出可以是培养博士研究生的人数,硕士研究生的人数,大学生的人数,学生的质量(德,智,体),教师的教学工作量,学校的科研成果(数量与质量)等等.根据输入数据和输出数据来评价决策单元的优劣,即所谓评价部门(或单位)间的相对有效性.
1978年由著名的运筹学家A.Charnes,W.W.Cooper和 E.Rhodes首先提出了一个被称为数据包络分析(Data Envelopment Analysis,简称DEA)的方法,去评价部门间的相对有效性(因此被称为DEA有效).他们的第一个模型被命名为CCR模型.从生产函数角度看,这一模型是用来研究具有多个输入、特别是具有多个输出的“生产部门”同时为“规模有效”与“技术有效”的十分理想且卓有成效的方法.1984年 R.D.Banker,A.Charnes和W.W.Cooper给出了一个被称为BCC的模型.1985年Charnes,Cooper和 B.Golany, L.Seiford, J.Stutz给出了另一个模型(称为CCGSS模型),这两个模型是用来研究生产部门的间的“技术有效”性的.1986年Charnes,Cooper 和魏权龄为了进一步地估计“有效生产前沿面”,利用Charnes, Cooper和K.Kortanek于1962年首先提出的半无限规划理论,研究了具有无穷多个决策单元的情况,给出了一个新的数据包络模型——CCW模型.1987年Charnes, Cooper,魏权龄和黄志民又得到了称为锥比率的数据包络模型——CCWH模型.这一模型可以用来处理具有过多的输入及输出的情况,而且锥的选取可以体现决策者的“偏好”.灵活的应用这一模型,可以将CCR模型中确定出的DEA有效决策单元进行分类或排队等等.这些模型以及新的模型正在被不断地进行完善和进一步发展.
上述的一些模型都可以看作是处理具有多个输入(输出越小越好)和多个输出(输入越大越好)的多目标决策问题的方法.可以证明,DEA有效性与相应的多目标规划问题的pareto有效解(或非支配解)是等价的.数据包络分析(即DEA)可以看作是一种统计分析的新方法.它是根据一组关于输入-输出的观察值来估计有效生产前沿面的.在经济学和计量经济学中,估计有效生产前沿面,通常使用统计回归以及其它的一些统计方法,这些方法估计出的生产函数并没有表现出实际的前沿面,得出得函数实际上是非有效的.因为这种估计是将有效决策单元与非有效决策单元混为一谈而得出来的.在有效性的评价方面,除了DEA方法以外,还有其它的一些方法,但是那些方法几乎仅限于单输出的情况.相比之下,DEA方法处理多输入,特别是多输出的问题的能力是具有绝对优势的.并且,DEA方法不仅可以用线性规划来判断决策单元对应的点是否位于有效生产前沿面上,同时又可获得许多有用的管理信息.因此,它比其它的一些方法(包括采用统计的方法)优越,用处也更广泛.
数据包络分析是运筹学的一个新的研究领域.Charnes和Cooper等人的第一个应用DEA的十分成功的案例,是在评价为弱智儿童开设公立学校项目的同时,描绘出可以反映大规模社会实验结果的研究方法.在评估中,输出包括“自尊”等无形的指标;输入包括父母的照料和父母的文化程度等,无论哪种指标都无法与市场价格相比较,也难以轻易定出适当的权重(权系数),这也是DEA的优点之一.
DEA的优点吸引了众多的应用者,应用范围已扩展到美国军用飞机的飞行、基地维修与保养,以及陆军征兵、城市、银行等方面.目前,这一方法应用的领域正在不断地扩大.它也可以用来研究多种方案之间的相对有效性(例如投资项目评价);研究在做决策之前去预测一旦做出决策后它的相对效果如何(例如建立新厂后,新厂相对于已有的一些工厂是否为有效).DEA模型甚至可以用来进行政策评价.
最引人注目的研究是把DEA与其它评价方法进行比较.例如将DEA应用于北卡罗来纳州各医院的有效性评价.已有的按计量经济学方式给出的回归生产函数认为,此例中不存在规模收益.DEA的研究发现,尽管使用同样的数据,回归生产函数不能象DEA那样正确测定规模收益.其关键在于(a)DEA和回归方法虽然都使用给定的同样数据,但使用方式不一样;(b)DEA致力于每个单个医院的优化,而不是对整个集合的统计回归优化.在其它的研究中,例如在评价医院经营有效性时,将DEA与马萨诸塞州有效性评定委员会使用的比例方法进行了比较,当使用模拟方法对DEA进行检验后认为,尽管由回归函数产生的数据有利于回归方法的使用,但是DEA方法显得更有效.
DEA方法和模型,以及对DEA方法的理解和应用还在不断的发展和深入.除了上面提到的新的模型BCC、CCGSS、CCW和CCWH模型外,在具体使用 DEA方法时,例如“窗口分析”方法,使DEA的应用范围拓广到动态情形;将DEA应用于决策单元为私人部门(商业公司)时,各决策单元之间存在着激烈的相互竞争作用等情况.
特别值得指出的是,DEA方法是纯技术性的,与市场(价格)可以无关.可以预言,这一方法在我们社会主义国家也会得到广泛应用.
⑷ 关于数据包络分析法的几个问题,急用。
建议去下载些期刊或找专门讲数据包络分析的书,此类书有好几本
⑸ 数据包络分析的作用
衡量服务生产力
从工程学角度看,衡量组织的生产力和衡量系统的效率相似。它可以表述为产出和投入的比率。
例如,在评估一个银行支行的运营效率时,可以用一个会计比率,如每笔出纳交易的成本。相对于其他支行,一个支行的比率较高,则可以认为其效率较低,但是较高的比率可能是源于一个更复杂的交易组合。运用简单比率的问题就在于产出组合没有明确。关于投入组合,也能作出同样的评论。广泛基础上的指标,如赢利性和投资回报,和全面绩效评估高度相关。但它们不足以评估一个服务单位的运营效率。比如,你不能得到以下的结论:一个赢利的支行必定在雇员和其他投入的使用上是有效的。赢利性业务的比率高于平均水平比资源运用的成本效率更能解释其赢利性。
⑹ 数据包络分析的介绍
数据包络分析(data envelopment analysis,DEA)是一个对多投入多产出的多个决策单元的效率评价方法。它是1978年由CHARNES和COOPER创建的。可广泛使用于业绩评价。
⑺ dea数据包络分析法可以用stata处理吗
可以,但也可以用matlab或dea专用软件