1. 如何通過隱馬爾科夫模型來預測股票價格
馬爾科夫預測模型它的前提條件是,在各個期間或者狀態時,變數面臨的下一個期間或者狀態的轉移概率都是一樣的、不隨時間變化的。一旦轉移概率有所變化,Markov模型必須改變轉移概率矩陣的參數,否則,預測的結果將會有很大的偏差。 隨機過程中,
2. 馬爾科夫鏈,對於數據很多,會有啥影響
馬爾科夫鏈對經濟預測和決策是通過模型來進行的。
馬爾可夫鏈,是指數學中具有馬爾可夫性質的離散事件隨機過程。該過程中,在給定當前知識或信息的情況下,過去(即當前以前的歷史狀態)對於預測將來(即當前以後的未來狀態)是無關的。
馬爾科夫鏈是一種預測工具。適宜對很多經濟現象的描述。最為典型的就是對股票市場的分析。有人利用歷史數據預測未來股票或股市走勢,發現並不具備明顯的准確性,得出的結論是股市無規律可言。
經濟學者們用建立馬爾科夫鏈模型來進行預測和決策,一般分為三步,設定狀態,計算轉移概率矩陣,計算轉移的結果。
3. 馬爾科夫的馬爾科夫分析模型
實際分析中,往往需要知道經過一段時間後,市場趨勢分析對象可能處於的狀態,這就要求建立一個能反映變化規律的數學模型。馬爾科夫市場趨勢分析模型是利用概率建立一種隨機型的時序模型,並用於進行市場趨勢分析的方法。
馬爾科夫分析法的基本模型為:
X(k+1)=X(k)×P
公式中:X(k)表示趨勢分析與預測對象在t=k時刻的狀態向量,P表示一步轉移概率矩陣,
X(k+1)表示趨勢分析與預測對象在t=k+1時刻的狀態向量。
必須指出的是,上述模型只適用於具有馬爾科夫性的時間序列,並且各時刻的狀態轉移概率保持穩定。若時間序列的狀態轉移概率隨不同的時刻在變化,不宜用此方法。由於實際的客觀事物很難長期保持同一狀態的轉移概率,故此法一般適用於短期的趨勢分析與預測。