A. excel回歸分析 估計股票β
www.tipdm.cn,這是一個在線的數據分析軟體,對股票的回歸分析也有
B. 利用回歸分析的方法,計算該股票的貝塔值,並分析各月是否有較大的差異
文內容需要包括以下要點。
(
1
)
該股票過去五年日收益率、
日波動幅度、
交易量的總體及各年的描述性統
計(用平均值、中位數、標准差、離差等指標進行分析)
。
(
2
)
上證綜指過去五年日收益率、
日波動幅度、
交易量的總體及各年的描述性
統計(用平均值、中位數、標准差、離差等指標進行分析)
。
(
3
)
利用相關系數的統計方法,
分析該股票日收益率與上證綜指日收益率之間
的關系,並分析各年是否有較大的差異;
(
4
)
利用回歸分析的方法,
計算該股票的貝塔值,
並分析各年是否有較大的差
異;
(
5
)
利用相關系數的統計方法,
分析該股票日波動幅度與該股票的成交量的對
數之間的相關關系,並分析各年是否有較大的差異;
(
6
)
利用相關系數的統計方法,
分析該股票日波動幅度與上證綜指的日波動幅
度以及日成交量的對數之間的相關關系,並分析各年是否有較大的差異;
(
7
)
利用回歸分析的方法,分析該股票日波動幅度的影響因素;
(
8
)
對上述的問題進行綜合,總結股票的量價關系;
C. 回歸分析的應用
相關分析研究的是現象之間是否相關、相關的方向和密切程度,一般不區別自變數或因變數。而回歸分析則要分析現象之間相關的具體形式,確定其因果關系,並用數學模型來表現其具體關系。比如說,從相關分析中我們可以得知「質量」和「用戶滿意度」變數密切相關,但是這兩個變數之間到底是哪個變數受哪個變數的影響,影響程度如何,則需要通過回歸分析方法來確定。
一般來說,回歸分析是通過規定因變數和自變數來確定變數之間的因果關系,建立回歸模型,並根據實測數據來求解模型的各個參數,然後評價回歸模型是否能夠很好的擬合實測數據;如果能夠很好的擬合,則可以根據自變數作進一步預測。
例如,如果要研究質量和用戶滿意度之間的因果關系,從實踐意義上講,產品質量會影響用戶的滿意情況,因此設用戶滿意度為因變數,記為Y;質量為自變數,記為X。根據圖8-3的散點圖,可以建立下面的線性關系: Y=A+BX+§
式中:A和B為待定參數,A為回歸直線的截距;B為回歸直線的斜率,表示X變化一個單位時,Y的平均變化情況;§為依賴於用戶滿意度的隨機誤差項。
對於經驗回歸方程: y=0.857+0.836x
回歸直線在y軸上的截距為0.857、斜率0.836,即質量每提高一分,用戶滿意度平均上升0.836分;或者說質量每提高1分對用戶滿意度的貢獻是0.836分。
上面所示的例子是簡單的一個自變數的線性回歸問題,在數據分析的時候,也可以將此推廣到多個自變數的多元回歸,具體的回歸過程和意義請參考相關的統計學書籍。此外,在SPSS的結果輸出里,還可以匯報R2,F檢驗值和T檢驗值。R2又稱為方程的確定性系數(coefficient of determination),表示方程中變數X對Y的解釋程度。R2取值在0到1之間,越接近1,表明方程中X對Y的解釋能力越強。通常將R2乘以100%來表示回歸方程解釋Y變化的百分比。F檢驗是通過方差分析表輸出的,通過顯著性水平(significant level)檢驗回歸方程的線性關系是否顯著。一般來說,顯著性水平在0.05以上,均有意義。當F檢驗通過時,意味著方程中至少有一個回歸系數是顯著的,但是並不一定所有的回歸系數都是顯著的,這樣就需要通過T檢驗來驗證回歸系數的顯著性。同樣地,T檢驗可以通過顯著性水平或查表來確定。在上面所示的例子中,各參數的意義如表8-2所示。
線性回歸方程檢驗 指標 顯著性水平 意義 R2 0.89 「質量」解釋了89%的「用戶滿意度」的變化程度 F 276.82 0.001 回歸方程的線性關系顯著 T 16.64 0.001 回歸方程的系數顯著 示例 SIM手機用戶滿意度與相關變數線性回歸分析
我們以SIM手機的用戶滿意度與相關變數的線性回歸分析為例,來進一步說明線性回歸的應用。從實踐意義講上,手機的用戶滿意度應該與產品的質量、價格和形象有關,因此我們以「用戶滿意度」為因變數,「質量」、「形象」和「價格」為自變數,作線性回歸分析。利用SPSS軟體的回歸分析,得到回歸方程如下:
用戶滿意度=0.008×形象+0.645×質量+0.221×價格
對於SIM手機來說,質量對其用戶滿意度的貢獻比較大,質量每提高1分,用戶滿意度將提高0.645分;其次是價格,用戶對價格的評價每提高1分,其滿意度將提高0.221分;而形象對產品用戶滿意度的貢獻相對較小,形象每提高1分,用戶滿意度僅提高0.008分。
方程各檢驗指標及含義如下: 指標 顯著性水平 意義 R2 0.89 「質量」和「價格」解釋了89%的「用戶滿意度」的變化程度 F 248.53 0.001 回歸方程的線性關系顯著 T(形象) 0.00 1.000 「形象」變數對回歸方程幾乎沒有貢獻 T(質量) 13.93 0.001 「質量」對回歸方程有很大貢獻 T(價格) 5.00 0.001 「價格」對回歸方程有很大貢獻 從方程的檢驗指標來看,「形象」對整個回歸方程的貢獻不大,應予以刪除。所以重新做「用戶滿意度」與「質量」、「價格」的回歸方程如下: 滿意度=0.645×質量+0.221×價格
用戶對價格的評價每提高1分,其滿意度將提高0.221分(在本示例中,因為「形象」對方程幾乎沒有貢獻,所以得到的方程與前面的回歸方程系數差不多)。
方程各檢驗指標及含義如下: 指標 顯著性水平 意義 R 0.89 「質量」和「價格」解釋了89%的「用戶滿意度」的變化程度 F 374.69 0.001 回歸方程的線性關系顯著 T(質量) 15.15 0.001 「質量」對回歸方程有很大貢獻 T(價格) 5.06 0.001 「價格」對回歸方程有很大貢獻
D. 什麼是回歸分析回歸分析有什麼用主要解決什麼問題
回歸分析,也有稱曲線擬合. 當在實驗中獲得自變數與因變數的一系列對應數據,(x1,y1),(x2,y2),(x3,y3),...(xn,yn)時,要找出一個已知類型的函數,y=f(x) ,與之擬合,使得實際數據和理論曲線的離差平方和:∑[yi-f(xi)]^2(從i=1到i=n相加)為最小. 這種求f(x)的方法,叫做最小二乘法。 求得的函數y=f(x)常稱為經驗公式,在工程技術和科學研究的數據處理中廣泛使用. 最普遍的是直線(一次曲線)擬合,在現代質量管理上,對散布圖的相關分析上也用此法. 當然,以上僅介紹了回歸分析的一部分簡要內容,要詳細了解,應讀大學,或自學到這個程度.我是自學的,我想你只要堅持不懈的努力,也是會成功的.
E. 回歸分析的認識及簡單運用
回歸分析的認識及簡單運用
回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,分為回歸和多重回歸分析;按照自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱為多重線性回歸分析。
定義
回歸分析是應用極其廣泛的數據分析方法之一。它基於觀測數據建立變數間適當的依賴關系,以分析數據內在規律,並可用於預報、控制等問題。
方差齊性
線性關系
效應累加
變數無測量誤差
變數服從多元正態分布
觀察獨立
模型完整(沒有包含不該進入的變數、也沒有漏掉應該進入的變數)
誤差項獨立且服從(0,1)正態分布。
現實數據常常不能完全符合上述假定。因此,統計學家研究出許多的回歸模型來解決線性回歸模型假定過程的約束。
研究一個或多個隨機變數Y1 ,Y2 ,…,Yi與另一些變數X1、X2,…,Xk之間的關系的統計方法,又稱多重回歸分析。通常稱Y1,Y2,…,Yi為因變數,X1、X2,…,Xk為自變數。回歸分析是一類數學模型,特別當因變數和自變數為線性關系時,它是一種特殊的線性模型。最簡單的情形是一個自變數和一個因變數,且它們大體上有線性關系,這叫一元線性回歸,即模型為Y=a+bX+ε,這里X是自變數,Y是因變數,ε是隨機誤差,通常假定隨機誤差的均值為0,方差為σ^2(σ^2大於0)σ^2與X的值無關。若進一步假定隨機誤差遵從正態分布,就叫做正態線性模型。一般的情形,它有k個自變數和一個因變數,因變數的值可以分解為兩部分:一部分是由於自變數的影響,即表示為自變數的函數,其中函數形式已知,但含一些未知參數;另一部分是由於其他未被考慮的因素和隨機性的影響,即隨機誤差。當函數形式為未知參數的線性函數時,稱線性回歸分析模型;當函數形式為未知參數的非線性函數時,稱為非線性回歸分析模型。當自變數的個數大於1時稱為多元回歸,當因變數個數大於1時稱為多重回歸。
回歸分析的主要內容為:
①從一組數據出發,確定某些變數之間的定量關系式,即建立數學模型並估計其中的未知參數。估計參數的常用方法是最小二乘法。
②對這些關系式的可信程度進行檢驗。
③在許多自變數共同影響著一個因變數的關系中,判斷哪個(或哪些)自變數的影響是顯著的,哪些自變數的影響是不顯著的,將影響顯著的自變數入模型中,而剔除影響不顯著的變數,通常用逐步回歸、向前回歸和向後回歸等方法。
④利用所求的關系式對某一生產過程進行預測或控制。回歸分析的應用是非常廣泛的,統計軟體包使各種回歸方法計算十分方便。
在回歸分析中,把變數分為兩類。一類是因變數,它們通常是實際問題中所關心的一類指標,通常用Y表示;而影響因變數取值的的另一類變數稱為自變數,用X來表示。
回歸分析研究的主要問題是:
(1)確定Y與X間的定量關系表達式,這種表達式稱為回歸方程;
(2)對求得的回歸方程的可信度進行檢驗;
(3)判斷自變數X對因變數Y有無影響;
(4)利用所求得的回歸方程進行預測和控制。
回歸分析可以說是統計學中內容最豐富、應用最廣泛的分支。這一點幾乎不帶誇張。包括最簡單的t檢驗、方差分析也都可以歸到線性回歸的類別。而卡方檢驗也完全可以用logistic回歸代替。
眾多回歸的名稱張口即來的就有一大片,線性回歸、logistic回歸、cox回歸、poission回歸、probit回歸等等等等,可以一直說的你頭暈。為了讓大家對眾多回歸有一個清醒的認識,這里簡單地做一下總結:
1、線性回歸,這是我們學習統計學時最早接觸的回歸,就算其它的你都不明白,最起碼你一定要知道,線性回歸的因變數是連續變數,自變數可以是連續變數,也可以是分類變數。如果只有一個自變數,且只有兩類,那這個回歸就等同於t檢驗。如果只有一個自變數,且有三類或更多類,那這個回歸就等同於方差分析。如果有2個自變數,一個是連續變數,一個是分類變數,那這個回歸就等同於協方差分析。所以線性回歸一定要認准一點,因變數一定要是連續變數。
2、logistic回歸,與線性回歸並成為兩大回歸,應用范圍一點不亞於線性回歸,甚至有青出於藍之勢。因為logistic回歸太好用了,而且太有實際意義了。解釋起來直接就可以說,如果具有某個危險因素,發病風險增加2.3倍,聽起來多麼地讓人通俗易懂。線性回歸相比之下其實際意義就弱了。logistic回歸與線性回歸恰好相反,因變數一定要是分類變數,不可能是連續變數。分類變數既可以是二分類,也可以是多分類,多分類中既可以是有序,也可以是無序。二分類logistic回歸有時候根據研究目的又分為條件logistic回歸和非條件logistic回歸。條件logistic回歸用於配對資料的分析,非條件logistic回歸用於非配對資料的分析,也就是直接隨機抽樣的資料。無序多分類logistic回歸有時候也成為多項logit模型,有序logistic回歸有時也稱為累積比數logit模型。
3、cox回歸,cox回歸的因變數就有些特殊,因為他的因變數必須同時有2個,一個代表狀態,必須是分類變數,一個代表時間,應該是連續變數。只有同時具有這兩個變數,才能用cox回歸分析。cox回歸主要用於生存資料的分析,生存資料至少有兩個結局變數,一是死亡狀態,是活著還是死亡?二是死亡時間,如果死亡,什麼時間死亡?如果活著,從開始觀察到結束時有多久了?所以有了這兩個變數,就可以考慮用cox回歸分析。
4、poisson回歸,poisson回歸相比就不如前三個用的廣泛了。但實際上,如果你能用logistic回歸,通常也可以用poission回歸,poisson回歸的因變數是個數,也就是觀察一段時間後,發病了多少人?或者死亡了多少人?等等。其實跟logistic回歸差不多,因為logistic回歸的結局是是否發病,是否死亡,也需要用到發病例數、死亡例數。大家仔細想想,其實跟發病多少人,死亡多少人一個道理。只是poission回歸名氣不如logistic回歸大,所以用的人也不如logistic回歸多。但不要因此就覺得poisson回歸沒有用。
5、probit回歸,在醫學里真的是不大用,最關鍵的問題就是probit這個詞太難理解了,通常翻譯為概率單位。probit函數其實跟logistic函數十分接近,二者分析結果也十分接近。可惜的是,probit回歸的實際含義真的不如logistic回歸容易理解,由此導致了它的默默無名,但據說在社會學領域用的似乎更多一些。
6、負二項回歸。所謂負二項指的是一種分布,其實跟poission回歸、logistic回歸有點類似,poission回歸用於服從poission分布的資料,logistic回歸用於服從二項分布的資料,負二項回歸用於服從負二項分布的資料。說起這些分布,大家就不願意聽了,多麼抽象的名詞,我也很頭疼。如果簡單點理解,二項分布你可以認為就是二分類數據,poission分布你可以認為是計數資料,也就是個數,而不是像身高等可能有小數點,個數是不可能有小數點的。負二項分布呢,也是個數,只不過比poission分布更苛刻,如果你的結局是個數,而且結局可能具有聚集性,那可能就是負二項分布。簡單舉例,如果調查流感的影響因素,結局當然是流感的例數,如果調查的人有的在同一個家庭里,由於流感具有傳染性,那麼同一個家裡如果一個人得流感,那其他人可能也被傳染,因此也得了流感,那這就是具有聚集性,這樣的數據盡管結果是個數,但由於具有聚集性,因此用poission回歸不一定合適,就可以考慮用負二項回歸。既然提到這個例子,用於logistic回歸的數據通常也能用poission回歸,就像上面案例,我們可以把結局作為二分類,每個人都有兩個狀態,得流感或者不得流感,這是個二分類結局,那就可以用logistic回歸。但是這里的數據存在聚集性怎麼辦呢,幸虧logistic回歸之外又有了更多的擴展,你可以用多水平logistic回歸模型,也可以考慮廣義估計方程。這兩種方法都可以處理具有層次性或重復測量資料的二分類因變數。
7、weibull回歸,有時中文音譯為威布爾回歸。weibull回歸估計你可能就沒大聽說過了,其實這個名字只不過是個噱頭,嚇唬人而已。上一篇說過了,生存資料的分析常用的是cox回歸,這種回歸幾乎統治了整個生存分析。但其實夾縫中還有幾個方法在頑強生存著,而且其實很有生命力,只是國內大多不願用而已。weibull回歸就是其中之一。cox回歸為什麼受歡迎呢,因為它簡單,用的時候不用考慮條件(除了等比例條件之外),大多數生存數據都可以用。而weibull回歸則有條件限制,用的時候數據必須符合weibull分布。怎麼,又是分布?!估計大家頭又大了,是不是想直接不往下看了,還是用cox回歸吧。不過我還是建議看下去。為什麼呢?相信大家都知道參數檢驗和非參數檢驗,而且可能更喜歡用參數檢驗,如t檢驗,而不喜歡用非參數檢驗,如秩和檢驗。那這里的weibull回歸和cox回歸基本上可以說是分別對應參數檢驗和非參數檢驗。參數檢驗和非參數檢驗的優缺點我也在前面文章里通俗介紹了,如果數據符合weibull分布,那麼直接套用weibull回歸當然是最理想的選擇,他可以給出你最合理的估計。如果數據不符合weibull分布,那如果還用weibull回歸,那就套用錯誤,肯定結果也不會真實到哪兒去。所以說,如果你能判斷出你的數據是否符合weibull分布,那當然最好的使用參數回歸,也就是weibull回歸。但是如果你實在沒什麼信心去判斷數據分布,那也可以老老實實地用cox回歸。cox回歸可以看作是非參數的,無論數據什麼分布都能用,但正因為它什麼數據都能用,所以不可避免地有個缺點,每個數據用的都不是恰到好處。weibull回歸就像是量體裁衣,把體形看做數據,衣服看做模型,weibull回歸就是根據你的體形做衣服,做出來的肯定對你正合身,對別人就不一定合身了。cox回歸呢,就像是到商場去買衣服,衣服對很多人都合適,但是對每個人都不是正合適,只能說是大致合適。至於到底是選擇麻煩的方式量體裁衣,還是圖簡單到商場直接去買現成的,那就根據你的喜好了,也根據你對自己體形的了解程度,如果非常熟悉,當然就量體裁衣了。如果不大了解,那就直接去商場買大眾化衣服吧。
8、主成分回歸。主成分回歸是一種合成的方法,相當於主成分分析與線性回歸的合成。主要用於解決自變數之間存在高度相關的情況。這在現實中不算少見。比如你要分析的自變數中同時有血壓值和血糖值,這兩個指標可能有一定的相關性,如果同時放入模型,會影響模型的穩定,有時也會造成嚴重後果,比如結果跟實際嚴重不符。當然解決方法很多,最簡單的就是剔除掉其中一個,但如果你實在捨不得,畢竟這是辛辛苦苦調查上來的,刪了太可惜了。如果捨不得,那就可以考慮用主成分回歸,相當於把這兩個變數所包含的信息用一個變數來表示,這個變數我們稱它叫主成分,所以就叫主成分回歸。當然,用一個變數代替兩個變數,肯定不可能完全包含他們的信息,能包含80%或90%就不錯了。但有時候我們必須做出抉擇,你是要100%的信息,但是變數非常多的模型?還是要90%的信息,但是只有1個或2個變數的模型?打個比方,你要診斷感冒,是不是必須把所有跟感冒有關的症狀以及檢查結果都做完?還是簡單根據幾個症狀就大致判斷呢?我想根據幾個症狀大致能能確定90%是感冒了。不用非得100%的信息不是嗎?模型也是一樣,模型是用於實際的,不是空中樓閣。既然要用於實際,那就要做到簡單。對於一種疾病,如果30個指標能夠100%確診,而3個指標可以診斷80%,我想大家會選擇3個指標的模型。這就是主成分回歸存在的基礎,用幾個簡單的變數把多個指標的信息綜合一下,這樣幾個簡單的主成分可能就包含了原來很多自變數的大部分信息。這就是主成分回歸的原理。
9、嶺回歸。嶺回歸的名稱由來我也沒有查過,可能是因為它的圖形有點像嶺。不要糾結於名稱。嶺回歸也是用於處理自變數之間高度相關的情形。只是跟主成分回歸的具體估計方法不同。線性回歸的計算用的是最小二乘估計法,當自變數之間高度相關時,最小二乘回歸估計的參數估計值會不穩定,這時如果在公式里加點東西,讓它變得穩定,那就解決了這一問題了。嶺回歸就是這個思想,把最小二乘估計里加個k,改變它的估計值,使估計結果變穩定。至於k應該多大呢?可以根據嶺跡圖來判斷,估計這就是嶺回歸名稱的由來。你可以選非常多的k值,可以做出一個嶺跡圖,看看這個圖在取哪個值的時候變穩定了,那就確定k值了,然後整個參數估計不穩定的問題就解決了。
10、偏最小二乘回歸。偏最小二乘回歸也可以用於解決自變數之間高度相關的問題。但比主成分回歸和嶺回歸更好的一個優點是,偏最小二乘回歸可以用於例數很少的情形,甚至例數比自變數個數還少的情形。聽起來有點不可思議,不是說例數最好是自變數個數的10倍以上嗎?怎麼可能例數比自變數還少,這還怎麼計算?可惜的是,偏最小二乘回歸真的就有這么令人發指的優點。所以,如果你的自變數之間高度相關、例數又特別少、而自變數又很多(這么多無奈的毛病),那就現在不用發愁了,用偏最小二乘回歸就可以了。它的原理其實跟主成分回歸有點像,也是提取自變數的部分信息,損失一定的精度,但保證模型更符合實際。因此這種方法不是直接用因變數和自變數分析,而是用反映因變數和自變數部分信息的新的綜合變數來分析,所以它不需要例數一定比自變數多。偏最小二乘回歸還有一個很大的優點,那就是可以用於多個因變數的情形,普通的線性回歸都是只有一個因變數,而偏最小二乘回歸可用於多個因變數和多個自變數之間的分析。因為它的原理就是同時提取多個因變數和多個自變數的信息重新組成新的變數重新分析,所以多個因變數對它來說無所謂。
看了以上的講解,希望能對大家理解回歸分析的運用有些幫助。
以上是小編為大家分享的關於回歸分析的認識及簡單運用的相關內容,更多信息可以關注環球青藤分享更多干貨
F. 回歸的回歸分析的應用
相關分析研究的是現象之間是否相關、相關的方向和密切程度,一般不區別自變數或因變數。而回歸分析則要分析現象之間相關的具體形式,確定其因果關系,並用數學模型來表現其具體關系。比如說,從相關分析中我們可以得知「質量」和「用戶滿意度」變數密切相關,但是這兩個變數之間到底是哪個變數受哪個變數的影響,影響程度如何,則需要通過回歸分析方法來確定。
一般來說,回歸分析是通過規定因變數和自變數來確定變數之間的因果關系,建立回歸模型,並根據實測數據來求解模型的各個參數,然後評價回歸模型是否能夠很好的擬合實測數據;如果能夠很好的擬合,則可以根據自變數作進一步預測。
例如,如果要研究質量和用戶滿意度之間的因果關系,從實踐意義上講,產品質量會影響用戶的滿意情況,因此設用戶滿意度為因變數,記為Y;質量為自變數,記為X。根據圖8-3的散點圖,可以建立下面的線性關系:
Y=A+BX+§
式中:A和B為待定參數,A為回歸直線的截距;B為回歸直線的斜率,表示X變化一個單位時,Y的平均變化情況;§為依賴於用戶滿意度的隨機誤差項。
在SPSS軟體里可以很容易地實現線性回歸,回歸方程如下:
y=0.857+0.836x回歸直線在y軸上的截距為0.857、斜率0.836,即質量每提高一分,用戶滿意度平均上升0.836分;或者說質量每提高1分對用戶滿意度的貢獻是0.836分。
上面所示的例子是簡單的一個自變數的線性回歸問題,在數據分析的時候,也可以將此推廣到多個自變數的多元回歸,具體的回歸過程和意義請參考相關的統計學書籍。此外,在SPSS的結果輸出里,還可以匯報R2,F檢驗值和T檢驗值。R2又稱為方程的確定性系數(coefficient of determination),表示方程中變數X對Y的解釋程度。R2取值在0到1之間,越接近1,表明方程中X對Y的解釋能力越強。通常將R2乘以100%來表示回歸方程解釋Y變化的百分比。F檢驗是通過方差分析表輸出的,通過顯著性水平(significant level)檢驗回歸方程的線性關系是否顯著。一般來說,顯著性水平在0.05以下,均有意義。當F檢驗通過時,意味著方程中至少有一個回歸系數是顯著的,但是並不一定所有的回歸系數都是顯著的,這樣就需要通過T檢驗來驗證回歸系數的顯著性。同樣地,T檢驗可以通過顯著性水平或查表來確定。在上面所示的例子中,各參數的意義如表8-2所示。
表8-2 線性回歸方程檢驗 指標 值 顯著性水平 意義R 0.89 「質量」解釋了89%的「用戶滿意度」的變化程度 F 276.82 0.001 回歸方程的線性關系顯著 T 16.64 0.001 回歸方程的系數顯著
G. 回歸分析的基本過程及其應用意義
回歸分析(英語:Regression Analysis)是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。回歸分析是建立因變數Y(或稱依變數,反應變數)與自變數X(或稱獨變數,解釋變數)之間關系的模型。如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱為多元線性回歸分析。對具有相關關系的現象,擇一適當的數學關系式,用以說明一個或一組變數變動時,另一變數或一組變數平均變動的情況,這種關系式稱為回歸方程。
H. 什麼是回歸分析
回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱為多元線性回歸分析。
回歸分析是應用極其廣泛的數據分析方法之一。它基於觀測數據建立變數間適當的依賴關系,以分析數據內在規律,並可用於預報、控制等問題。
I. 回歸分析法的應用
趨勢分析法總體上分四大類:(一)縱向分析法;(二)橫向分析法;(三)標准分析法;(四)綜合分析法。此外,趨勢分析法還有一種趨勢預測分析。趨勢預測分析運用回歸分析法、指數平滑法等方法來對財務報表的數據進行分析預測,分析其發展趨勢,並預測出可能的發展結果。以下先簡要介紹如何運用趨勢線性方程來作趨勢預測分析,其它四類方法後面分別介紹。趨勢線性方程是作趨勢分析時,預測銷售和收益所普遍採用的一種方法。公式表示為:y=a+bx.其中:a和b為常數,x表示時期系數的值,x是由分配確定,並要使∑x=0。為了使∑x=0。當時期數為偶數或奇數時,值的分配稍有不同
J. 什麼時候用回歸分析,什麼時候用時間序列
方法不同。回歸分析是研究變數之間的統計相關關系的一種統計方法。它從自變數和因變數的一組觀測數據出發,尋找一個函數式,將變數之間的統計相關關系近似地表達出來。這個能夠近似表達自變數與因變數之間關系的函數式。而時間序列更加偏向去有明顯的以時間為分割點,某個變數隨著時間的推移產生變化。近似於自變數與時間之間的關系。