① 解釋一段Apriori演算法的意思,越詳細越好偶電腦白痴
這段是經典Ariori演算法產生頻繁項集的偽代碼
② apriori演算法是什麼
經典的關聯規則挖掘演算法包括Apriori演算法和FP-growth演算法。
apriori演算法多次掃描交易資料庫,每次利用候選頻繁集產生頻繁集;而FP-growth則利用樹形結構,無需產生候選頻繁集而是直接得到頻繁集,大大減少掃描交易資料庫的次數,從而提高了演算法的效率,但是apriori的演算法擴展性較好,可以用於並行計算等領域。
基本演算法:
Apriori algorithm是關聯規則里一項基本演算法
Apriori演算法將發現關聯規則的過程分:
第一通過迭代,檢索出事務資料庫1中的所有頻繁項集,即支持度不低於用戶設定的閾值的項集;
第二利用頻繁項集構造出滿足用戶最小信任度的規則。其中,挖掘或識別出所有頻繁項集是該演算法的核心,占整個計算量的大部分。
③ 什麼是Apriori演算法這個演算法有什麼用途還有數理統計裡面的單因素重復試驗和雙因素重復試驗可不可以
這個是數據挖掘中提取關聯規則的
④ 有誰懂apriori演算法啊
經典Apriori演算法分兩部分:一是頻繁項的產生,二是根據頻繁項產生關聯規則;
重點的是第一部,會開銷很多時間;
其中頻繁項的產生又分成2部分:一是連接步,一是剪枝步;
推薦書籍;數據挖掘概念與技術
數據挖掘導論
這個頻繁項產生比較麻煩,文字打不清楚,不懂的再問我,我最近在做畢設。
⑤ 如何提高apriori演算法的效率
Apriori演算法是關聯規則挖掘中的經典演算法。在Apriori演算法中,使用頻繁項集的先驗知識,逐層搜索的迭代方法,通過掃描資料庫,累積每個項的計數,並收集滿足最小支持度的項,找每個Lk都需要掃描一次資料庫。演算法的效率隨著數據量的增大,頻繁項集的增多,演算法的效率就非常的低,本文通過對Apriori演算法分析,應用散列、事務壓縮、劃分、抽樣等方法,最大可能的減少資料庫掃描的次數,快速發現頻繁項集,提高Apriori演算法的效率。
⑥ Apriori演算法是什麼適用於什麼情境
經典的關聯規則挖掘演算法包括Apriori演算法和FP-growth演算法。apriori演算法多次掃描交易資料庫,每次利用候選頻繁集產生頻繁集;而FP-growth則利用樹形結構,無需產生候選頻繁集而是直接得到頻繁集,大大減少掃描交易資料庫的次數,從而提高了演算法的效率。但是apriori的演算法擴展性較好,可以用於並行計算等領域。
Apriori algorithm是關聯規則里一項基本演算法。是由Rakesh Agrawal和Ramakrishnan Srikant兩位博士在1994年提出的關聯規則挖掘演算法。關聯規則的目的就是在一個數據集中找出項與項之間的關系,也被稱為購物藍分析 (Market Basket analysis),因為「購物藍分析」很貼切的表達了適用該演算法情景中的一個子集。
⑦ 數據挖掘演算法有哪些
統計和可視化要想建立一個好的預言模型,你必須了解自己的數據。最基本的方法是計算各種統計變數(平均值、方差等)和察看數據的分布情況。你也可以用數據透視表察看多維數據。數據的種類可分為連續的,有一個用數字表示的值(比如銷售量)或離散的,分成一個個的類別(如紅、綠、藍)。離散數據可以進一步分為可排序的,數據間可以比較大小(如,高、中、低)和標稱的,不可排序(如郵政編碼)。圖形和可視化工具在數據准備階段尤其重要,它能讓你快速直觀的分析數據,而不是給你枯燥乏味的文本和數字。它不僅讓你看到整個森林,還允許你拉近每一棵樹來察看細節。在圖形模式下人們很容易找到數據中可能存在的模式、關系、異常等,直接看數字則很難。可視化工具的問題是模型可能有很多維或變數,但是我們只能在2維的屏幕或紙上展示它。比如,我們可能要看的是信用風險與年齡、性別、婚姻狀況、參加工作時間的關系。因此,可視化工具必須用比較巧妙的方法在兩維空間內展示n維空間的數據。雖然目前有了一些這樣的工具,但它們都要用戶「訓練」過他們的眼睛後才能理解圖中畫的到底是什麼東西。對於眼睛有色盲或空間感不強的人,在使用這些工具時可能會遇到困難。聚集(分群)聚集是把整個資料庫分成不同的群組。它的目的是要群與群之間差別很明顯,而同一個群之間的數據盡量相似。與分類不同(見後面的預測型數據挖掘),在開始聚集之前你不知道要把數據分成幾組,也不知道怎麼分(依照哪幾個變數)。因此在聚集之後要有一個對業務很熟悉的人來解釋這樣分群的意義。很多情況下一次聚集你得到的分群對你的業務來說可能並不好,這時你需要刪除或增加變數以影響分群的方式,經過幾次反復之後才能最終得到一個理想的結果。神經元網路和K-均值是比較常用的聚集演算法。不要把聚集與分類混淆起來。在分類之前,你已經知道要把數據分成哪幾類,每個類的性質是什麼,聚集則恰恰相反。關聯分析關聯分析是尋找資料庫中值的相關性。兩種常用的技術是關聯規則和序列模式。關聯規則是尋找在同一個事件中出現的不同項的相關性,比如在一次購買活動中所買不同商品的相關性。序列模式與此類似,他尋找的是事件之間時間上的相關性,如對股票漲跌的分析。關聯規則可記為A==>B,A稱為前提和左部(LHS),B稱為後續或右部(RHS)。如關聯規則「買錘子的人也會買釘子」,左部是「買錘子」,右部是「買釘子」。要計算包含某個特定項或幾個項的事務在資料庫中出現的概率只要在資料庫中直接統計即可。某一特定關聯(「錘子和釘子」)在資料庫中出現的頻率稱為支持度。比如在總共1000個事務中有15個事務同時包含了「錘子和釘子」,則此關聯的支持度為1.5%。非常低的支持度(比如1百萬個事務中只有一個)可能意味著此關聯不是很重要,或出現了錯誤數據(如,「男性和懷孕」)。要找到有意義的規則,我們還要考察規則中項及其組合出現的相對頻率。當已有A時,B發生的概率是多少?也即概率論中的條件概率。回到我們的例子,也就是問「當一個人已經買了錘子,那他有多大的可能也會買釘子?」這個條件概率在數據挖掘中也稱為可信度,計算方法是求百分比:(A與B同時出現的頻率)/(A出現的頻率)。讓我們用一個例子更詳細的解釋這些概念: 總交易筆數(事務數):1,000包含「錘子」:50包含「釘子」:80包含「鉗子」:20包含「錘子」和「釘子」:15包含「鉗子」和「釘子」:10包含「錘子」和「鉗子」:10包含「錘子」、「鉗子」和「釘子」:5 則可以計算出: 「錘子和釘子」的支持度=1.5%(15/1,000)「錘子、釘子和鉗子」的支持度=0.5%(5/1,000)「錘子==>釘子」的可信度=30%(15/50)「釘子==>錘子」的可信度=19%(15/80)「錘子和釘子==>鉗子」的可信度=33%(5/15)「鉗子==>錘子和釘子」的可信度=25%(5/20)