當前位置:首頁 » 分析預測 » 股票分析用matlab還是python
擴展閱讀
公牛股份股票代碼603195 2025-02-04 22:16:48

股票分析用matlab還是python

發布時間: 2022-08-09 11:39:05

❶ 選股策略回測用 Matlab 好還是用 Python 好

都是工具,也都可以開發選股策略的回測,推薦Python.理由:Python免費且開源Python編程語言簡潔優美Python有眾多的量化包,包括獲取數據、處理數據、回測、風險分析。目前國外、國內很多平台和項目都是使用PythonPython開發策略,簡潔高效,這里舉幾個例子:1.[量化學堂-策略開發]金叉死叉策略2.[量化學堂-策略開發]海龜策略3.[量化學堂-策略開發]淺談小市值策略4.[量化學堂-策略開發]多頭排列回踩買入策略5.[量化學堂-策略開發]藉助talib使用技術分析指標來炒股6.[量化學堂-策略開發]大師系列之價值投資法7.[量化學堂-策略開發]事件驅動策略(基於業績快報)8.[量化學堂-策略開發]基於協整的配對交易9.[量化學堂-策略開發]使用cvxopt包實現馬科維茨投資組合優化:以一個股票策略為例這些策略涵蓋了股票量化主要的策略類型,但是使用Python語言,每個策略代碼都不多。

❷ 金融工程,量化投資學什麼軟體好Python還是Matlab

個人覺得還是都會比較好。技多不壓身。量化投資用Matlab 和 C++,一個建模一個執行,足夠了。實在不愛用Matlab的話,R和Python也行。

選擇python推薦可以閱讀:《量化投資:以python為工具》主要講解量化投資的思想和策略,並藉助Python 語言進行實戰。《量化投資:以Python為工具》一共分為5 部分,第1 部分是Python 入門,第2 部分是統計學基礎,第3 部分是金融理論、投資組合與量化選股,第4 部分是時間序列簡介與配對交易,第5 部分是技術指標與量化投資。《量化投資:以Python為工具》首先對Python 編程語言進行介紹,通過學習,讀者可以迅速掌握用Python 語言處理數據的方法,並靈活運用Python 解決實際金融問題;其次,向讀者介紹量化投資的理論知識,主要講解量化投資所需的數量基礎和類型等方面;最後講述如何在Python 語言中構建量化投資策略。

選擇MATLAB推薦閱讀:《問道量化投資:用MATLAB來敲門》主要講述以MATLAB為分析工具的量化投資,由「MATLAB入門」、「MATLAB量化投資基礎」和「MATLAB量化投資相關函數詳解」3篇組成。入門篇讓零編程基礎的讀者快速掌握強大的數值計算和模擬分析工具MATLAB;量化投資基礎篇簡要介紹相關的投資策略及模型,重點講述MATLAB中的模型實現及應用;函數詳解篇對MATLAB的金融工具箱、衍生品工具箱和固定收益工具箱中的全部函數一一進行詳解,以幫助讀者快速掌握這些函數。

❸ Python 與 Matlab 哪一個對量化投資和分析更有幫助

python是語言,matlab是工具,這倆不該放在一起比對
做投資分析顯然是matlab的優勢,其他數學工具也沒有matlab好,用它沒錯

❹ matlab和python哪個好

簡單對比:
python和matlab的共同點都是各種庫十分豐富。
python是給懶人用的。
matlab是給數學好的人用的。。。
比起python,matlab的大小簡直不能忍。
python是免費的,我用上了Windows正版,Adobe Flash和DW的正版,但是仍然買不起matlab的正版。
matlab是專門給科學計算設計的。python不是。
python可以調用matlab庫。當然matlab也能調用python庫。
python容易學。
matlab在大學里你不得不學。
python的閉包有著奇怪的性質,這使得你把lisp語言翻譯成python的時候經常遇到bug,而且基本上都是因為閉包而起。
當你把lisp語言翻譯成matlab時,bug會比較少,但是你完全不知道它們是怎麼出現的,而且很難解決。
簡言之,學生的話,建議MATLAB,可以選擇破解版,我們學校給買了正版。工作的話建議Python,而且現在winPython 的數學計算也很強大。

❺ 量化投資中,MATLAB和python哪一個好

Matlab在矩陣處理方面的強大優勢Python無法比擬,我曾經用Matlab和Python跑同一個演算法,涉及到矩陣中Symbol求導。Python用的是Numpy,Sympy和Scipy,感覺Sympy中Matrix雖然功能強大,但是速度很慢,而且需要專注其中各種細節。如:其對Complex類型是無法自動expand的,常常出現(1+I)(2I+1)這種結果,這時需要調用.expand來解決。Matlab可以使你專注於模型,Python要超過Matlab還需要時間。但是Python在內容抓取,機器學習,等有強大的第三方包,如Scarpy,Skikit-learn等,發展很快。概括之:現在用Matlab,未來用Python

❻ 選股策略回測用matlab好還是用python好

用Matlab吧,我用了matlab16年了,python用了幾個月,還是覺得matlab好用

❼ 分析數據關系用Matlab好,還是Python好

現在分析全線轉R/python,未來有可能上Julia。
別問為什麼不用matlab了。R/python組合好處在於開源,數據workflow相當容易搭建起來,另外背靠學術界,有相當多的新統計工具可以試。說R速度慢根本不是問題,機器好一點就行了。超大型的數據甚至可以跑R/hadoop。
MATLAB的完全就不能比。
————————————
另外說在「工程上MATLAB有而R/python沒有」我覺得是十分奇怪的。就比如,目前新工具而言比如deep learning來說。python上有Theano/pylearn2/對接caffe,MATLAB的deep learning我目前只知道一個Toolbox。舊的工具R/python上也不缺。
另外我看有答案把MATLAB能直接發送交易信號作為MATLAB賣點。我覺得貴司策略和交易是不是定位不太清晰。為了保證可靠的性能和策略管理的便利性,我想除了個人投資者沒有人會選擇開著MATLAB下單。

❽ matlab和python哪個更適合金融領域的數據分析

現在分析全線轉R/python,未來有可能上Julia。
別問為什麼不用matlab了。R/python組合好處在於開源,數據workflow相當容易搭建起來,另外背靠學術界,有相當多的新統計工具可以試。說R速度慢根本不是問題,機器好一點就行了。超大型的數據甚至可以跑R/hadoop。
MATLAB的完全就不能比。
————————————
另外說在「工程上MATLAB有而R/python沒有」我覺得是十分奇怪的。就比如,目前新工具而言比如deep learning來說。python上有Theano/pylearn2/對接caffe,MATLAB的deep learning我目前只知道一個Toolbox。舊的工具R/python上也不缺。

另外我看有答案把MATLAB能直接發送交易信號作為MATLAB賣點。我覺得貴司策略和交易是不是定位不太清晰。為了保證可靠的性能和策略管理的便利性,我想除了個人投資者沒有人會選擇開著MATLAB下單。