當前位置:首頁 » 分析預測 » python示例代碼股票分析
擴展閱讀
賒銷 2024-11-18 09:40:29

python示例代碼股票分析

發布時間: 2022-09-02 08:57:55

① 怎麼用python計算股票

作為一個python新手,在學習中遇到很多問題,要善於運用各種方法。今天,在學習中,碰到了如何通過收盤價計算股票的漲跌幅。
第一種:
讀取數據並建立函數:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import spline
from pylab import *
import pandas as pd
from pandas import Series
a=pd.read_csv('d:///1.csv',sep=',')#文件位置

t=a['close']
def f(t):
s=[]
for i in range(1,len(t)):
if i==1:
continue
else:
s.append((t[i]-t[i-1])/t[i]*100)
print s
plot(s)

plt.show()
f(t)
第二種:
利用pandas裡面的方法:
import pandas as pd

a=pd.read_csv('d:///1.csv')
rets = a['close'].pct_change() * 100
print rets

第三種:
close=a['close']
rets=close/close.shift(1)-1
print rets

總結:python是一種非常好的編程語言,一般而言,我們可以運用構建相關函數來實現自己的思想,但是,眾所周知,python中裡面的有很多科學計算包,裡面有很多方法可以快速解決計算的需要,如上面提到的pandas中的pct_change()。因此在平時的使用中應當學會尋找更好的方法,提高運算速度。

② 如何用python代碼判斷一段范圍內股票最高點

Copyright © 1999-2020, CSDN.NET, All Rights Reserved




登錄

python+聚寬 統計A股市場個股在某時間段的最高價、最低價及其時間 原創
2019-10-12 09:20:50

開拖拉機的大寶

碼齡4年

關注
使用工具pycharm + 聚寬數據源,統計A股市場個股在某時間段的最高價、最低價及其時間,並列印excel表格輸出

from jqdatasdk import *
import pandas as pd
import logging
import sys
logger = logging.getLogger("logger")
logger.setLevel(logging.INFO)

# 聚寬數據賬戶名和密碼設置
auth('username','password')

#獲取A股列表,包括代號,名稱,上市退市時間等。
security = get_all_securities(types=[], date=None)
pd2 = get_all_securities(['stock'])


# 獲取股票代號
stocks = list(get_all_securities(['stock']).index)

# 獲取股票名稱
stocknames = pd2['display_name']

start_date = 񟭏-01-01'
end_date = 񟭒-12-31'
def get_stocks_high_low(start_date,end_date):
# 新建表,表頭列
# 為:"idx","stockcode","stockname","maxvalue","maxtime","lowvalue","lowtime"
result = pd.DataFrame(columns=["idx", "stockcode", "stockname", "maxvalue", "maxtime", "lowvalue", "lowtime"])
for i in range(0,stocks.__len__()-1):
pd01 = get_price(stocks[i], start_date, end_date, frequency='daily',
fields=None, skip_paused=False,fq='pre', count=None)
result=result.append(pd.DataFrame({'idx':[i],'stockcode':[stocks[i]],'stockname':
[stocknames[i]],'maxvalue':[pd01['high'].max()],'maxtime':
[pd01['high'].idxmax()],'lowvalue': [pd01['low'].min()], 'lowtime':
[pd01['low'].idxmin()]}),ignore_index=True)

result.to_csv("stock_max_min.csv",encoding = 'utf-8', index = True)
logger.warning("執行完畢!

③ 用Python 進行股票分析 有什麼好的入門書籍或者課程嗎

個人覺得這問題問的不太對,說句不好的話,你是來搞編程的還是做股票的。


當然,如果題主只是用來搜集資料,看數據的話那還是可以操作一波的,至於python要怎麼入門,個人下面會推薦一些入門級的書籍,通過這些書籍,相信樓主今後會有一個清晰的了解(我們以一個完全不會編程的的新手來看待)。

《Learn Python The Hard Way》,也就是我們所說的笨辦法學python,這絕對是新手入門的第一選擇,裡面話題簡練,是一本以練習為導向的教材。有淺入深,而且易懂。

其它的像什麼,《Python源碼剖析》,《集體智慧編程》,《Python核心編程(第二版)》等題主都可以適當的選擇參讀下,相信都會對題主有所幫助。

最後,還是要重復上面的話題,炒股不是工程學科,它有太多的變數,對於現在的智能編程來說,它還沒有辦法及時的反映那些變數,所以,只能當做一種參考,千萬不可過渡依賴。


結語:pyhton相對來說是一種比較高端的學科,需要有很強的邏輯能力。所以入門是非常困難的,如果真的要學習,是需要很大的毅力去堅持下去的,而且不短時間就能入門了,要有所心理准備。

④ python的量化代碼怎麼用到股市中

2010 ~ 2017 滬深A股各行業量化分析

在開始各行業的量化分析之前,我們需要先弄清楚兩個問題:

  • 第一,A股市場上都有哪些行業;

  • 第二,各行業自2010年以來的營收、凈利潤增速表現如何?

  • 第一個問題
    很好回答,我們使用JQData提供的獲取行業成分股的方法,輸入get_instries(name='sw_l1')
    得到申萬一級行業分類結果如下:它們分別是:【農林牧漁、採掘、化工、鋼鐵、有色金屬、電子、家用電器、食品飲料、紡織服裝、輕工製造、醫葯生物、公用事業、交通運輸、房地產、商業貿易、休閑服務、綜合、建築材料、建築裝飾、電器設備、國防軍工、計算機、傳媒、通信、銀行、非銀金融、汽車、機械設備】共計28個行業。

    第二個問題
    要知道各行業自2010年以來的營收、凈利潤增速表現,我們首先需要知道各行業在各個年度都有哪些成分股,然後加總該行業在該年度各成分股的總營收和凈利潤,就能得到整個行業在該年度的總營收和總利潤了。這部分數據JQData也為我們提供了方便的介面:通過調用get_instry_stocks(instry_code=『行業編碼』, date=『統計日期』),獲取申萬一級行業指定日期下的行業成分股列表,然後再調用查詢財務的數據介面:get_fundamentals(query_object=『query_object』, statDate=year)來獲取各個成分股在對應年度的總營收和凈利潤,最後通過加總得到整個行業的總營收和總利潤。這里為了避免非經常性損益的影響,我們對凈利潤指標最終選取的扣除非經常性損益的凈利潤數據。

    我們已經獲取到想要的行業數據了。接下來,我們需要進一步分析,這些行業都有什麼樣的增長特徵。

    我們發現,在28個申萬一級行業中,有18個行業自2010年以來在總營收方面保持了持續穩定的增長。它們分別是:【農林牧漁,電子,食品飲料,紡織服裝,輕工製造,醫葯生物,公用事業,交通運輸,房地產,休閑服務,建築裝飾,電氣設備,國防軍工,計算機,傳媒,通信,銀行,汽車】;其他行業在該時間范圍內出現了不同程度的負增長。

    那麼,自2010年以來凈利潤保持持續增長的行業又會是哪些呢?結果是只有5個行業保持了基業長青,他們分別是醫葯生物,建築裝飾,電氣設備,銀行和汽車。(註:由於申萬行業在2014年發生過一次大的調整,建築裝飾,電氣設備,銀行和汽車實際從2014年才開始統計。)

    從上面的分析結果可以看到,真正能夠保持持續穩定增長的行業並不多,如果以扣非凈利潤為標准,那麼只有醫葯生物,建築裝飾,電氣設備,銀行和汽車這五個行業可以稱之為優質行業,實際投資中,就可以只從這幾個行業中去投資。這樣做的目的是,一方面,能夠從行業大格局層面避免行業下行的風險,繞開一個可能出現負增長的的行業,從而降低投資的風險;另一方面,也大大縮短了我們的投資范圍,讓投資者能夠專注於從真正好的行業去挑選公司進行投資。

「2010-2017」投資於優質行業龍頭的收益表現

選好行業之後,下面進入選公司環節。我們知道,即便是一個好的行業也仍然存在表現不好的公司,那麼什麼是好的公司呢,本文試圖從營業收入規模和利潤規模和來考察以上五個基業長青的行業,從它們中去篩選公司作為投資標的。

3.1按營業收入規模構建的行業龍頭投資組合

首先,我們按照營業收入規模,篩選出以上5個行業【醫葯生物,建築裝飾,電氣設備,銀行和汽車】從2010年至今的行業龍頭如下表所示:

結論

通過以上行業分析和投資組合的歷史回測可以看到:

  • 先選行業,再選公司,即使是從2015年股災期間開始投資,至2018年5月1號,仍然能夠獲得相對理想的收益,可以說,紅杉資本的賽道投資法則對於一般投資者還是比較靠譜的。

  • 在構建行業龍頭投資組合時,凈利潤指標顯著優於營業收入指標,獲得的投資收益能夠更大的跑贏全市場收益率

  • 市場是不斷波動的,如果一個投資者從股災期間開始投資,那麼即使他買入了上述優質行業的龍頭組合,在近3年也只能獲得12%左右的累計收益;而如果從2016年5月3日開始投資,那麼至2018年5月2日,2年時間就能獲得超過50%以上的收益了。所以,在投資過程中選擇時機也非常重要。

出自:JoinQuant 聚寬數據 JQData

⑤ python 設計一個名為Stock的類來表示一個公司的股票

class Stock():
def __init__(self):
self.__no = ""
self.__name = ""
self.previousClosingPrice = 0
self.currentPrice = 0
def creatStock(self,stockInfo):
self.__no = stockInfo[0]
self.__name = stockInfo[1]
self.previousClosingPrice = stockInfo[2]
self.currentPrice = stockInfo[3]
def getStockName(self):
return(self.__name)

def getStockNo(self):
return(self.__no)

def setPreviousClosingPrice(self,price):
self.previousClosingPrice = price

def getPreviousClosingPrice(self):
return(self.previousClosingPrice)

def setCurrentPrice(self,price):
self.currentPrice = price

def getCurrentPrice(self):
return(self.currentPrice)
def getChangePercent(self):
return((self.currentPrice - self.previousClosingPrice)/self.currentPrice)

stock = Stock()
stock.creatStock(["601318","中國平安",63.21,64.39])
print(stock.getStockNo())
print(stock.getStockName())
print(stock.getCurrentPrice())
print(stock.getPreviousClosingPrice())

⑥ 如何用python計算某支股票持有90天的收益率

defget(self,get,money):
print「ATM:」
print「yourmoneyis+「,self.get,」%aday
self.today=self.money*(self.get/100)+self.money
print「nowyouhave」,self.today
self.tomorrow=self.today*(self.get/100)+self.today
print「tomorrowyouwellhave」,self.tomorrow
get(50,10000)

這個代碼會給你1天後和2天後的余額,如果要顯示九十天,還請您自己打完

⑦ python對股票分析有什麼作用

你好,Python對於股票分析來說,用處是很大的
Python,用數據軟體分析可以做股票的量化程序,因為股票量化是未來的一種趨勢,能夠解決人為心理波動和沖動下單等不良行為,所以學好python量化的話,那麼對股票來說有很大很大幫助

⑧ python怎麼分析所有股票

在 Python的QSTK中,是通過 s_datapath 變數,定義相應股票數據所在的文件夾。一般可以通過 QSDATA 這個環境變數來設置對應的數據文件夾。
具體的股票數據來源,例如滬深、港股等市場,你可以使用免費的WDZ程序輸出相應日線、5分鍾數據到 s_datapath 變數所指定的文件夾中。然後可使用 Python的QSTK中,qstkutil.DataAccess進行數據訪問。

⑨ 新人發帖求助,python使用tushare股票分析包方法報錯

代碼是
[import tushare as ts
ts.get_hist_data('600848')][/code]

因為是示例,所以包應該下面有這個方法,我用print dir(ts) 看到下面只有
['__builtins__', '__doc__', '__file__', '__name__', '__package__', 'ts' ] 這幾個方法(顯然不是全部的方法)
剛剛實際運行了一下,沒有報錯,你檢查一下是否安裝正確,tushare包的安裝直接用 pip install tushare 安裝即可,沒必要訪問官網,當然,你需要先安裝pip

⑩ 怎樣用python處理股票

用Python處理股票需要獲取股票數據,以國內股票數據為例,可以安裝Python的第三方庫:tushare;一個國內股票數據獲取包。可以在網路中搜索「Python tushare」來查詢相關資料,或者在tushare的官網上查詢說明文檔。