當前位置:首頁 » 分析預測 » garch模型分析股票
擴展閱讀
陳好現狀 2024-11-27 14:22:13
捕捉能手 2024-11-27 14:10:13

garch模型分析股票

發布時間: 2022-09-23 00:10:22

A. 什麼是arch模型和garch模型

1、ARCH模型(Autoregressive conditional heteroskedasticity model)全稱「自回歸條件異方差模型」,解決了傳統的計量經濟學對時間序列變數的第二個假設(方差恆定)所引起的問題。

2、GARCH模型稱為廣義ARCH模型,是ARCH模型的拓展,由Bollerslev(1986)發展起來的。

(1)GARCH模型(波勒斯勒夫(Bollerslev),1986年)。GARCH(p,q)模型為:

(1)garch模型分析股票擴展閱讀:

GARCH的發展:

傳統的計量經濟學對時間序列變數的第二個假設:假定時間序列變數的波動幅度(方差)是固定的,不符合實際,比如,人們早就發現股票收益的波動幅度是隨時間而變化的,並非常數。這使得傳統的時間序列分析對實際問題並不有效。

羅伯特·恩格爾在1982年發表在《計量經濟學》雜志(Econometrica)的一篇論文中提出了ARCH模型解決了時間序列的波動性(volatility)問題,當時他研究的是英國通貨膨脹率的波動性。

B. 如何用eviews進行GARCH模型測股票波動性,要具體步驟

Eviews是Econometrics Views的縮寫,直譯為計量經濟學觀察,通常稱為計量經濟學軟體包。它的本意是對社會經濟關系與經濟活動的數量規律,採用計量經濟學方法與技術進行「觀察」。另外Eviews也是美國QMS公司研製的在Windows下專門從事數據分析、回歸分析和預測的工具。使用Eviews可以迅速地從數據中尋找出統計關系,並用得到的關系去預測數據的未來值。Eviews的應用范圍包括:科學實驗數據分析與評估、金融分析、宏觀經濟預測、模擬、銷售預測和成本分析等。
GARCH模型是一個專門針對金融數據所量體訂做的回歸模型,除去和普通回歸模型相同的之處,GARCH對誤差的方差進行了進一步的建模。特別適用於波動性的分析和預測,這樣的分析對投資者的決策能起到非常重要的指導性作用,其意義很多時候超過了對數值本身的分析和預測。
一般的GARCH模型可以表示為:
Y(t)=h(t)^1/2*a(t) ⑴
h(t)=h(t-1)+a(t-1)^2 ⑵
其中ht為條件方差,at為獨立同分布的隨機變數,ht與at互相獨立,at為標准正態分布。⑴式稱為條件均值方程;⑵式稱為條件方差方程,說明時間序列條件方差的變化特徵。為了適應收益率序列經驗分布的尖峰厚尾特徵,也可假設 服從其他分布,如Bollerslev (1987)假設收益率服從廣義t-分布,Nelson(1991)提出的EGARCH模型採用了GED分布等。另外,許多實證研究表明收益率分布不但存在尖峰厚尾特性,而且收益率殘差對收益率的影響還存在非對稱性。當市場受到負沖擊時,股價下跌,收益率的條件方差擴大,導致股價和收益率的波動性更大;反之,股價上升時,波動性減小。股價下跌導致公司的股票價值下降,如果假設公司債務不變,則公司的財務杠桿上升,持有股票的風險提高。因此負沖擊對條件方差的這種影響又被稱作杠桿效應。由於GARCH模型中,正的和負的沖擊對條件方差的影響是對稱的,因此GARCH模型不能刻畫收益率條件方差波動的非對稱性。

C. GARCH模型的缺陷

由於GARCH (p,q)模型是ARCH模型的擴展,因此GARCH(p,q)同樣具有ARCH(q)模型的特點。但GARCH模型的條件方差不僅是滯後殘差平方的線性函數,而且是滯後條件方差的線性函數。
GARCH模型適合在計算量不大時,方便地描述了高階的ARCH過程,因而具有更大的適用性。但GARCH(p,q)模型在應用於資產定價方面存在以下的不足:
①GARCH模型不能解釋股票收益和收益變化波動之間出現的負相關現象。GARCH(p,q)模型假定條件方差是滯後殘差平方的函數,因此,殘差的符號不影響波動,即條件方差對正的價格變化和負的價格變化的反應是對稱的。然而在經驗研究中發現,當利空消息出現時,即預期股票收益會下降時,波動趨向於增大;當利好消息出現時,即預期股票收益會上升時,波動趨向於減小。GARCH(p,q)模型不能解釋這種非對稱現象。
②GARCH(p,q)模型為了保證非負,假定(2)式中所有系數均大於零。這些約束隱含著的任何滯後項增大都會增加因而排除了的隨機波動行為,這使得在估計GARCH模型時可能出現震盪現象。

D. 如何用GARCH(1,1)求股票的具體波動率數據

以哈飛股份(600038)為例,運用GARCH(1,1)模型計算股票市場價值的波動率。

GARCH(1,1)模型為:

(1)

(2)

其中, 為回報系數, 為滯後系數, 和 均大於或等於0。

(1)式給出的均值方程是一個帶有誤差項的外生變數的函數。由於是以前面信息為基礎的一期向前預測方差,所以稱為條件均值方程。

(2)式給出的方程中: 為常數項, (ARCH項)為用均值方程的殘差平方的滯後項, (GARCH項)為上一期的預測方差。此方程又稱條件方差方程,說明時間序列條件方差的變化特徵。

通過以下六步進行求解:

本文選取哈飛股份2009年全年的股票日收盤價,採用Eviews 6.0的GARCH工具預測股票收益率波動率。具體計算過程如下:

第一步:計算日對數收益率並對樣本的日收益率進行基本統計分析,結果如圖1和圖2。

日收益率採用JP摩根集團的對數收益率概念,計算如下:

其中Si,Si-1分別為第i日和第i-1日股票收盤價。

圖1 日收益率的JB統計圖

對圖1日收益率的JB統計圖進行分析可知:

(1)標准正態分布的K值為3,而該股票的收益率曲線表現出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大於正態分布,說明存在著較為明顯的「尖峰厚尾」形態;

(2)偏度值與0有一定的差別,序列分布有長的左拖尾,拒絕均值為零的原假設,不屬於正態分布的特徵;

(3)該股票的收益率的JB統計量大於5%的顯著性水平上的臨界值5.99,所以可以拒絕其收益分布正態的假設,並初步認定其收益分布呈現「厚尾」特徵。

以上分析證明,該股票收益率呈現出非正態的「尖峰厚尾」分布特徵,因此利用GARCH模型來對波動率進行擬合具有合理性。

第二步:檢驗收益序列平穩性

在進行時間序列分析之前,必須先確定其平穩性。從圖2日收益序列的路徑圖來看,有比較明顯的大的波動,可以大致判斷該序列是一個非平穩時間序列。這還需要嚴格的統計檢驗方法來驗證,目前流行也是最為普遍應用的檢驗方法是單位根檢驗,鑒於ADF有更好的性能,故本文採用ADF方法檢驗序列的平穩性。

從表1可以看出,檢驗t統計量的絕對值均大於1%、5%和10%標准下的臨界值的絕對值,因此,序列在1%的顯著水平下拒絕原假設,不存在單位根,是平穩序列,所以利用GARCH(1,1)模型進行檢驗是有效的。

圖2 日收益序列圖

表1ADF單位根檢驗結果

第三步:檢驗收益序列相關性

收益序列的自相關函數ACF和偏自相關函數PACF以及Ljung-Box-Pierce Q檢驗的結果如表3(滯後階數 =15)。從表4.3可以看出,在大部分時滯上,日收益率序列的自相關函數和偏自相關函數值都很小,均小於0.1,表明收益率序列並不具有自相關性,因此,不需要引入自相關性的描述部分。Ljung-Box-Pierce Q檢驗的結果也說明日收益率序列不存在明顯的序列相關性。

表2自相關檢驗結果

第四步:建立波動性模型

由於哈飛股份收益率序列為平穩序列,且不存在自相關,根據以上結論,建立如下日收益率方程:

(3)

(4)

第五步:對收益率殘差進行ARCH檢驗

平穩序列的條件方差可能是常數值,此時就不必建立GARCH模型。故在建模前應對收益率的殘差序列εt進行ARCH檢驗,考察其是否存在條件異方差,收益序列殘差ARCH檢驗結果如表3。可以發現,在滯後10階時,ARCH檢驗的伴隨概率小於顯著性水平0.05,拒絕原假設,殘差序列存在條件異方差。在條件異方差的理論中,滯後項太多的情況下,適宜採用GARCH(1,1)模型替代ARCH模型,這也說明了使用GARCH(1,1)模型的合理性。

表3日收益率殘差ARCH檢驗結果

第六步:估計GARCH模型參數,並檢驗

建立GARCH(1,1)模型,並得到參數估計和檢驗結果如表4。其中,RESID(-1)^2表示GARCH模型中的參數α,GARCH(-1)表示GARCH模型中的參數β,根據約束條件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,滿足約束條件。同時模型中的AIC和SC值比較小,可以認為該模型較好地擬合了數據。

表4日收益率波動率的GARCH(1,1)模型的參數估計

E. 時間序列基礎

1.隨機時序分析的基本概念
1)隨機變數:簡單的隨機現象,如某班一天學生出勤人數,是靜態的。
2)隨機過程:隨機現象的動態變化過程。動態的。如某一時期各個時刻的狀態。
所謂隨機過程,就是說現象的變化沒有確定形式,沒有必然的變化規律。用數學語言來說,就是事物變化的過程不能用一個(或幾個)時間t的確定的函數來描述。
如果對於每一特定的t屬於T(T是時間集合),X(t)是一個隨機變數,則稱這一族無窮多個隨機變數{X(t),t屬於T}是一個隨機過程。

2.白雜訊序列
1)純隨機過程:隨機變數X(t)(t=1,2,3……),如果是由一個不相關的隨機變數的序列構成的,即對於所有s不等於k,隨機變數Xs和Xk的協方差為零,則稱其為 純隨機過程
2)白雜訊過程:如果一個純隨機過程的期望和方差均為常數,則稱之為 白雜訊過程 。白雜訊過程的樣本實稱成為白雜訊序列,簡稱白雜訊。
3)高斯白雜訊序列:如果白雜訊具體是服從均值為0、方差為常數的正態分布,那就是 高斯白雜訊序列

3.平穩性序列
1)平穩性可以說是時間序列分析的基礎。平穩的通俗理解就是時間序列的一些行為不隨時間改變, 所謂平穩過程就是其統計特性不隨時間的平移而變化的過程。
2)即時間序列內含的規律和邏輯,要在被預測的未來時間段內能夠延續下去。這樣我們才能用歷史信息去預測未來信息,類似機器學習中的訓練集和測試集同分布。
3)如果時間序列的變化是沒有規律的、完全隨機的,那麼預測模型也就沒有用。
4)平穩性的數學表達:如果時間序列在某一常數附近波動且波動范圍有限,即有常數均值和常數方差,並且延遲k期的序列變數的自協方差和自相關系數是相等的或者說延遲k期的序列變數之間的影響程度是一樣的,則稱該序列為平穩序列。簡單說就是沒有明顯趨勢且波動范圍有限。

4.嚴平穩/強平穩
1)通俗來說,就是時間序列的聯合分布隨著時間變化嚴格保持不變。
2)數學表達:如果對所有的時刻 t, (yt1,yt2,…ytm)的聯合分布與(y(t1+k),(yt2+k),…y(tm+k))的聯合分布相同,我們稱時間序列 {yt} 是嚴平穩的。也就是時間序列的聯合分布在時間的平移變換下保持不變。

5.弱平穩
1)數學表達:均值不變,協方差Cov(yt,y(t-k))=γk,γk依賴於k。
2)即協方差也不隨時間改變,而僅與時間差k相關。
3)可以根據根據時間序列的折線圖等大致觀察數據的(弱)平穩性:*所有數據點在一個常數水平上下以相同幅度波動。
4)弱平穩的線性時間序列具有短期相關性(證明見參考書),即通常只有近期的序列值對現時值得影響比較明顯,間隔越遠的過去值對現時值得影響越小。至於這個間隔,也就是下面要提到的模型的階數。

6.嚴平穩和弱平穩的關系
1)嚴平穩是一個很強的條件,難以用經驗的方法驗證,所以一般將弱平穩性作為模型的假設條件。
2)兩者並不是嚴格的包含與被包含關系,但當時間序列是正態分布時,二者等價。

7.單位根非平穩序列(可轉換為平穩序列的非平穩序列)
在金融數據中,通常假定資產收益率序列是弱平穩的。但還有一些研究對象,比如利率、匯率、資產的價格序列,往往不是平穩的。對於資產的價格序列,其非平穩性往往由於價格沒有固定的水平,這樣的非平穩序列叫做單位根(unit-root)非平穩序列。
1)最著名的單位根非平穩序列的例子是隨機遊走(random walk)模型:
pt=μ+p(t-1)+εt
μ是常數項(漂移:drift)。εt是白雜訊序列,則pt就是一個隨機遊走。它的形式和AR模型很像,但不同之處在於,AR模型中,系數的模需要小於1,這是AR的平穩性條件,而隨機遊走相當於系數為1的AR公式,不滿足AR模型的平穩性條件。
隨機遊走模型可作為(對數)股價運動的統計模型,在這樣的模型下,股價是不可預測的。因為εt關於常數對稱,所以在已知p(t-1)的條件下,pt上升或下降的概率都是50%,無從預測。
2)帶趨勢項的時間序列
pt=β0+β1*t+yt,yt是一個平穩時間序列。
帶漂移的隨機遊走模型,其均值和方差都隨時間變化;而帶趨勢項的時間序列,其均值隨時間變化,但方差則是不變的常數。
單位根非平穩序列可以進行平穩化處理轉換為平穩序列。比如用差分法處理隨機遊走序列,用用簡單的回歸分析移除時間趨勢處理帶趨勢項的時間序列。

建立具體的模型,需解決如下三個問題模型的具體形式、時序變數的滯後期以及隨機擾動項的結構。

μ是yt的均值;ψ是系數,決定了時間序列的線性動態結構,也被稱為權重,其中ψ0=1;{εt}為高斯白雜訊序列,它表示時間序列{yt}在t時刻出現了新的信息,所以εt稱為時刻t的innovation(新信息)或shock(擾動)。
線性時間序列模型,就是描述線性時間序列的權重ψ的計量經濟模型或統計模型,比如ARIMA。因為並非所有金融數據都是線性的,所以不是所有金融數據都適合ARIMA等模型。

①自回歸模型(AR)
用變數自身的歷史時間數據對變數進行回歸,從而預測變數未來的時間數據。
p階(滯後值,可暫理解為每個移動窗口有p期)自回歸公式即AR(p):

②移動平均模型(MA)
移動平均模型關注的是誤差項的累加,能夠有效消除預測中的隨機波動。
可以看作是白雜訊序列的簡單推廣,是白雜訊序列的有限線性組合。也可以看作是參數受到限制的無窮階AR模型。

③自回歸移動平均模型(ARMA)
有時候,要用很多階數的AR和MA模型(見後面的定階問題),為解決這個問題提出ARMA模型。
對於金融中的收益率序列,直接使用ARMA模型的時候較少,但其概念與波動率建模很相關,GARCH模型可以認為是對{εt}的ARMA模型。

④自回歸差分移動平均模型(ARIMA)
ARIMA比ARMA僅多了個"I",代表的含義可理解為 差分。
一些非平穩序列經過d次差分後,可以轉化為平穩時間序列。我們對差分1次後的序列進行平穩性檢驗,若果是非平穩的,則繼續差分。直到d次後檢驗為平穩序列。

⑤一般分析過程
1、 平穩性檢驗
ADF檢驗(單位根檢驗):這是一種檢查數據穩定性的統計測試。
原假設(無效假設):時間序列是不穩定的。
2、 平穩化處理
平穩化的基本思路是:通過建模並估計趨勢和季節性這些因素,並從時間序列中移除,來獲得一個穩定的時間序列,然後再使用統計預測技術來處理時間序列,最後將預測得到的數據,通過加入趨勢和季節性等約束,來還原到原始時間序列數據。
2.0 對數變換
對某些時間序列需要取對數處理,一是可以將一些指數增長的時間序列變成線性增長,二是可以穩定序列的波動性。對數變換在經濟金融類時間序列中常用。
2.1 差分法
如果是單位根非平穩的(比如隨機遊走模型),可以對其進行差分化。它能讓數據呈現一種更加平穩的趨勢。差分階數的選擇通常越小越好,只要能夠使得序列穩定就行。
2.2 平滑法
移動平均、指數加權移動平均
註:經差分或平滑後的數據可能因包含缺失值而不能使用檢驗,需要將缺失值去除
2.3 分解法
建立有關趨勢和季節性的模型,並從模型中刪除它們。
3 、建立模型:模型選擇和模型的定階
模型的選擇即在AR、MA、ARMA、ARIMA中間如何選擇。
模型的定階即指定上面過程中產生的超參數p、q和d(差分的階數)。
(1)用ACF和PACF圖判斷使用哪種線性時間序列模型
AR模型:ACF拖尾,PACF截尾,看PACF定階。
MA模型:ACF截尾,PACF拖尾,看ACF定階。
ARMA模型:都拖尾。(EACF定階)
截尾:在某階後 迅速 趨於0(後面大部分階的對應值在二倍標准差以內);
拖尾:按指數衰減或震盪,值到後面還有增大的情況。
ARIMA模型:適用於差分後平穩的序列。
(2)利用 信息准則 函數選擇合適的階
對於個數不多的時序數據,可以通過觀察自相關圖和偏相關圖來進行模型識別,倘若要分析的時序數據量較多,例如要預測每隻股票的走勢,就不可能逐個去調參了。這時可以依據AIC或BIC准則識別模型的p, q值,通常認為AIC或BIC值越小的模型相對更優。
AIC或BIC准則綜合考慮了殘差大小和自變數的個數,殘差越小AIC或BIC值越小,自變數個數越多AIC或BIC值越大。AIC或BIC准則可以說是對模型過擬合設定了一個標准。
AIC (Akaike information criterion,赤池信息度量准則)
AIC=2k-2ln(L)
· BIC (Bayesian information criterion,貝葉斯信息度量准則)
BIC=kln(n)-2ln(L)
k為模型的超參數個數,n為樣本數量,L為似然函數。
類比機器學習中的損失函數=經驗損失函數+正則化項。
模型選擇標准:AIC和BIC越小越好(在保證精度的情況下模型越簡單越好)
4 、模型檢驗和評估(之前應切分訓練集和驗證集)
檢驗殘差是否符合標准(QQ圖):是否服從均值為0,方差是常數的正態分布(εt是否是高斯白雜訊序列)。
擬合優度檢驗(模型的評估):R 2和調整後的R 2(R^2隻適用於平穩序列)。
5 、預測
如果之前進行了標准化、差分化等,需要進行還原:
標准化的還原要注意是log(x+1)還是log(x)。

1 、基礎概念
波動率
在期權交易中,波動率是標的資產的收益率的條件標准差。之前的平穩序列假設方差為常數,但當序列的方差不是常數時,我們需要用波動率對其變化進行描述。
對於金融時間序列,波動率往往具有以下特徵:
存在波動率聚集(volatility cluster)現象。 即波動率在一些 時間段 上高,一些時間段上低。
波動率以連續時間變化,很少發生跳躍。
波動率不會發散到無窮,而是在固定的范圍內變化(統計學角度上說,其是平穩的)
杠桿效應:波動率對價格大幅上升和大幅下降的反應是不同的。
波動率模型/條件異方差模型
給資產收益率的波動率進行建模的模型叫做條件異方差模型。這些波動率模型試圖刻畫的數據有這樣的特性: 它們是序列不相關或低階序列相關的(比如股票的日收益率可能相關,但月收益率則無關),但又不是獨立的 。波動率模型就是試圖刻畫序列的這種非獨立性。
定義信息集F(t-1)是包含過去收益率的一切線性函數,假定F(t-1)給定,那麼在此條件下時間序列yt的條件均值和條件方差分別表示為:

F. GARCH模型測股票波動性需要什麼數據

你只需下載股票每日歷史價位就可以了。比方說你下載的是每日開盤價(用每日均價也是可以的),記為S1,S2, S3。。。然後,你需要把這些數字轉換成價格日變化率,即(S2-S1)/S1, (S3-S2)/S2,...等等,然後把這組變化率數據導入Eviews, 按下面鏈接頁面的步驟操作就可以,很容易的。
http://perso.fundp.ac.be/~mpetijea/MyEviews/Clips/clip17.html
加油。

G. 如何用garch模型 預測出今後一個月的股票價格啊

模型在中國不行,國外的可以但也並不穩定,主要都是操盤手作怪

H. 什麼是BEKK-MGARCH模型

如果題主明白ARCH或者GARCH模型是咋回事的話,那麼MGARCH模型就是多變數形式,BEKK思想就是讓所有的參數都以二次型的形式放進模型來確保所有的方差都是正的。這個主要是用來做波動性溢出效應。顧名思義,就是看變數的波動(variance)之間是否存在相關性。

相關介紹:

ARCH模型(Autoregressive conditional heteroskedasticity model)全稱「自回歸條件異方差模型」,解決了傳統的計量經濟學對時間序列變數的第二個假設(方差恆定)所引起的問題。這個模型是獲得2003年諾貝爾經濟學獎的計量經濟學成果之一。

傳統的計量經濟學對時間序列變數的第二個假設:假定時間序列變數的波動幅度(方差)是固定的,不符合實際,比如,人們早就發現股票收益的波動幅度是隨時間而變化的,並非常數。這使得傳統的時間序列分析對實際問題並不有效。

羅伯特·恩格爾在1982年發表在《計量經濟學》雜志(Econometrica)的一篇論文中提出了ARCH模型解決了時間序列的波動性(volatility)問題,當時他研究的是英國通貨膨脹率的波動性。

I. GARCH模型的原理




一般的GARCH模型可以表示為:其中ht為條件方差,ut為獨立同分布的隨機變數,ht與ut互相獨立,ut為標准正態分布。(1)式稱為條件均值方程;(3)式稱為條件方差方程,說明時間序列條件方差的變化特徵。為了適應收益率序列經驗分布的尖峰厚尾特徵,也可假設 服從其他分布,如Bollerslev (1987)假設收益率服從廣義t-分布,Nelson(1991)提出的EGARCH模型採用了GED分布等。另外,許多實證研究表明收益率分布不但存在尖峰厚尾特性,而且收益率殘差對收益率的影響還存在非對稱性。當市場受到負沖擊時,股價下跌,收益率的條件方差擴大,導致股價和收益率的波動性更大;反之,股價上升時,波動性減小。股價下跌導致公司的股票價值下降,如果假設公司債務不變,則公司的財務杠桿上升,持有股票的風險提高。因此負沖擊對條件方差的這種影響又被稱作杠桿效應。由於GARCH模型中,正的和負的沖擊對條件方差的影響是對稱的,因此GARCH模型不能刻畫收益率條件方差波動的非對稱性。