1. spss回歸分析t、F值分別代表什麼呀
R方為決定系數,即擬合模型所能解釋的因變數的變化百分比。例如,R方=0.810,說明擬合方程能解釋因變數變化的81%,不能解釋的19%。
F是方差檢驗,整個模型的全局檢驗,看擬合方程是否有意義
T值是對每個自變數進行一個接一個的檢驗(logistic回歸),看其beta值,即回歸系數是否有意義
F和T的顯著性均為0.05,
回歸分析在科學研究領域是最常用的統計方法。《SPSS回歸分析》介紹了一些基本的統計方法,例如,相關、回歸(線性、多重、非線性)、邏輯(二項、多項)、有序回歸和生存分析(壽命表法、Kaplan-Meier法以及Cox回歸)。
SPSS是世界上最早的統計分析軟體。1968年,斯坦福大學的三位研究生NormanH.Nie,C.Hadlai(Tex)Hull和DaleH.Bent成功地進行了研究和開發。同時成立了SPSS公司。
(1)多元線性回歸股票分析擴展閱讀:
原理:
這種表示取決於變數Y中可由控制變數X解釋的變化百分比。
決定系數不等於相關系數的平方。這個和相關系數之間的區別是如果你去掉|,R|等於0和1,
由於R2<R,可以防止對相關系數所表示的相關做誇張的解釋。
決定系數:在Y的平方和中,X引起的平方和所佔的比例為R2
相關程度由決定系數的程度決定。
R2越接近1,相關方程的參考值越大。反之,越接近0,參考值越低。這就是一元回歸分析的情況。但是決定系數和回歸系數本質上是不相關的就像標准差和標准誤差本質上是不相關的一樣。
在多元回歸分析中,決定系數為路徑系數的平方。
表達式:R2=SSR/SST=1-SSE/SST
其中:SST=SSR+SSE,SST (total sum of squares)為總平方和,SSR (regression sum of squares)為回歸平方和,SSE (error sum of squares) 為殘差平方和。
2. 關於多元線性回歸用spss分析後結果該怎麼看
第一步:首先對模型整體情況進行分析
包括模型擬合情況(R²),是否通過F檢驗等。
第二步:分析X的顯著性
分析X的顯著性(P值),如果呈現出顯著性,則說明X對Y有影響關系。如果不顯著,則應剔除該變數。
第三步:判斷X對Y的影響關系方向及影響程度
結合回歸系數B值,對比分析X對Y的影響程度。B值為正數則說明X對Y有正向影響,為負數則說明有負向影響。
第四步:寫出模型公式
第五步:對分析進行總結
SPSSAU也會提供智能分析建議,方便分析人員快速得出分析結果。