㈠ 某公司持有甲 乙 丙 三種股票構成的證券組合,他們的β系數分別為2.0 1.5 0.5
(1)計算原證券組合的β系數 βP=∑xiβi=60%×2.0+30%×1.5+10%×0.5=1.7 (2)計算原證券組合的風險收益率 Rp=βP×(Km-RF)=1.7×(14%-10%)=6.8% 原證券組合的必要收益率=10%+6.8%=16.8% 只有原證券組合的收益率達到或者超過16.8%,投資者才會願意投資。 (3)計算新證券組合的β系數和風險收益率 βP=∑xiβi=20%×2.0+30%×1.5+50%×0.5=1.1 新證券組合的風險收益率: RP=βP×(Km-RF)=1.1×(14%-10%)=4.4% 新證券組合的必要收益率=10%+4.4%=14.4% 只有新證券組合的收益率達到或者超過14.4%,投資者才會願意投資
㈡ 某投資組合僅由A、B、C三隻股票構成,其相關數據如下表所示。
根據每隻股票的價值算出期初權重,A=30*200,以此類推。
計算每種情況下每隻股票的收益率,例如A股票繁榮時的收益率為(34.5-30)/30=0.15.
根據計算出的收益率計算每隻股票的期望收益率等於收益率乘以概率,然後組合的收益率就是每隻股票的權重乘以每隻股票的期望收益率。
在Excel中,根據數據計算每隻股票的方差,協方差矩陣。
組合方差就是每隻股票權重的平方乘以方差+2*每兩支股票的權重乘以兩只股票的協方差。
組合標准差就是方差開方。可計算得出結果
㈢ 某公司持有A,B,C三種股票組成的證券組合,三種股票所佔比重分別為40%,30%和30%,其β系數為1.2、1.0和0.8,
(1)該證券組合的β系數=40%*1.2+30%*1+30%*0.8=1.02
(2)該證券組合的必要報酬率=8%+10%*1.02=18.2%
㈣ 某公司持有A、B、C三種股票構成的證券組合,三種股票所佔比重分 別為40%、40%和20%;其β系數分別為1.2、1
E(Ri)=Rf+βi[E(Rm)-Rf]
其中: Rf: 無風險收益率
E(Rm):市場投資組合的預期收益率
βi: 投資i的β值。
E(Rm)-Rf為投資組合的風險報酬。
整個投資組合的β值是投資組合中各資產β值的加權平均數,在不存在套利的情況下,資產收益率。
對於多要素的情況:
E(R)=Rf+∑βi[E(Ri)-Rf]
其中,E(Ri): 要素i的β值為1而其它要素的β均為0的投資組合的預期收益率。
(1)加權β=40%*1.2+40%*1.0+20%*0.8=1.04;
組合風險報酬率=加權β*[E(Rm)-Rf] =1.04*(10%-8%)=2.08%;
(2)該證券組合的必要收益率=組合風險報酬率+無風險收益率=2.08%+8%=10.08%;
(3)投資A股票的必要投資收益率=8%+1.2*(10%-8%)=10.04%;
(4)是。A的β值最大,增加對A投資使得加權β變大,組合必要收益率增加;
㈤ 請問在知道一個股票組合中三隻股票的β系數和他們所佔的比例的情況向,如何算出這個股票組合的β系數。
用各自的β系數乘以各自的資金所佔百分比,再求和即可。
證券之星問股
㈥ 某公司持有A、B、C三種股票構成的投資組合,計算甲公司所持投資組合的貝塔系數和必要投資報酬率。
β=1*40%+0.5*30%+2*30%=1.15
必要投資報酬率=6%+1.15*(16%-6%)=17.5%