⑴ 日歷效應的月初效應
「月初效應」指證券市場在一個月中的頭幾個交易日的平均收益率比同月其它交易日的平均收益率要高得多,且在統計上顯著為正。Ariel(1987)對1963—1981年間的美國股市進行研究,將每個月分為兩部分:第一部分是從前一個月的最後一個交易日到本交易月的第九個交易日,第二部分為本月的剩餘交易日。然後,他將這兩部分的累計收益率進行比較,實證結果發現正的收益率僅來自於每一交易月的第一部分。Lakonishok and Smidt(1988)通過分析長達90年的道瓊斯工業平均指數也發現了類似結果,即從前一交易月的最後一個交易日到本交易月的第三個交易日之間的平均收益率顯著較高。Ogrlen(1990)使用1969—1986期間CRSP的價值加權和平均加權股票指數的日收益率對「月初效應」進行了檢驗,他的實證結果驗證了Lakonishok和Smidt的結果。Cadsby and Ratner(1989)對l0個國家和地區不同時期的股市進行研究,發現美國、加拿大、瑞士、西德、英國和澳大利亞等存在「月初效應」,但日本、香港、義大利和法國等不存在「月初效應」。Jaffe and Westerfield(1998)研究發現英國、日本、加拿大和澳大利亞股票市場雖然不存在「月初效應」,但存在「月末效應」,即一個月的最後一個交易日的平均收益率高於其它交易日的平均收益率。Howe and Wood(1994)採用Ariel劃分交易月的方法研究檢驗了1981—1991年間日本、台灣、香港、澳大利亞和新加坡股市,發現在香港和澳大利亞存在顯著的「月初效應」。
⑵ 如何計算「有機增長率」Organic Growth Rate
增長率=增量/原總量*100%
例:2006年某廠的產值是20萬元,2007年是22萬元,那麼增長率就是
(22-20)/20*100%=10%.
負增長率的計算
上個月完成7.16萬,這個月只完成了5.8萬,負增長率是多少呢
增長率=(本月收入-上月收入)/上月收入*百分之百=(5.8-7.16)/7.16=-0.1899*100%=-18.99%
增長率為負,即-18.99% ,不過這是環比,也就是和上個月比較,如果是和去年同期比較稱作同比,做法一樣,用(本月收入-原來收入)/上月收入*百分之百
你可以套用這個公式, 有機增長(Organic Growth)是指公司依託現有資源和業務,通過提高產品質量、銷量與服務水平,拓展客戶以及擴大市場份額,推進創新與提高生產效率等途徑,而獲得的銷售收入及利潤的自然增長。有機增長是指致力於提升客戶滿意度、員工參與度以及核心業務盈利的增長,是公司依靠創新、新產品和服務、客戶增長等核心業務拓展而帶來的增長。有機增長是與非有機增長(Nonorganic Growth)對應的概念,是剔除了並購、資產剝離、匯率影響後的增長,反映了核心業務增長的潛能和持久性。追求有機增長並不意味著全盤否定並購的積極意義。公司的有機增長過程中需要那些戰略性的、與核心業務相關的小額並購,這些並購會為公司獲得新技術、新產品、新理念、或者新客戶,尤其是涉及某些處於生命周期早期階段的產品或者技術。
從海外市場來看,有機增長企業突出的業績與穩健的持續發展能力是客觀可見的。據CRSP統計,弗吉尼亞大學教授Hess對800餘家在1996-2003年間創造高經濟價值的上市公司進行篩選後發現,真正通過發展主營業務、靠公司內在動力獲得持續有機增長的企業僅23家。而這23家保持連續有機增長的企業平均年化收益率高達31%,在股票市場的表現遠遠超過納斯達克、道瓊斯和標普500指數,其累積收益率分別是這三個指數的4倍、7倍和10倍。很多大公司的年度報告在對一年經營成就作總結時,都會提到其中有機增長實現了多少。在對企業的研究報告中,也往往特別關注有機增長對企業業績提高的貢獻:在投資領域,著名咨詢公司科爾尼編制了針對美國31家金融機構的有機增長指數;在學術研究領域,弗吉尼亞大學教授赫斯(Hess)還創立了「有機增長指數(OGI)」模型,依據該模型篩選出像UPS、百思買等一批優秀的有機增長特徵明顯的公司,這些都為投資者衡量、評價企業的有機增長提供了指引。
有機增長投資理念具有幾個關鍵點:首先是如何增長比增長多少更重要,不同類型的增長應給予不同的估值;其次是財務指標,ROE(凈資產收益率)及其變化將比每股收益及其變化更加重要;此外,主業經營強勁的公司比那些單純擅長資產運作的公司質量要好。最後,有機增長最終能給股東帶來更高的回報、更好的現金流量。因為很多外延式增長公司從盈利指標上看起來不錯,但不僅不能給股東帶來回報,反而需要不斷地融資來維系增長。
可以從以下幾個特點來看待企業的有機增長。
①:以全新視角來看企業增長
企業賺的每一分錢並不都是一樣的。企業增長的方式也並不是一樣的,既可以通過有機方式實現增長,也可以通過收購重組等非有機方式實現增長,而兩者是不一樣的。那些依靠有機方式實現的增長具有較高的含金量,雖然其增長速度可能較慢,但增長的質量更好,盈利的穩定性、確定性和持續性更強,能給股東帶來更高的股東回報。與此相對應的,通過大規模並購重組、大規模融資手段實現的外延式增長雖然可以快速擴大企業規模,快速提升盈利水平,但盈利增長較不具有持續性,而且從全世界的范圍來看,並購最終失敗的概率很大,風險較高。
②:以全新視角來看企業估值
我們在給企業估值時,一般對增長越快的企業給予越高的估值,有機增長理念則強調了估值高低不僅要看增長的速度,更要看增長的來源、質量和方式。有機增長往往持續性較好,應有更高估值;而很多依賴於並購、融資的增長,表面雖然增長速度很高,但穩定性、持續性差,給股東帶來的回報低,因此,不應該給予太高的估值,以前我們很可能為一些低質量的增長付出了過高的價格。總之,增長應該依其不同方式而享有不同的估值。
③:以全新視角來評價企業經營成就
正如巴菲特所說「如果資本回報平平,那麼投得多賺得多的記錄並不是輝煌的管理成就,把你存在銀行賬戶的錢增加三倍,你的收益也會增加三倍」,我們衡量企業的經營成就時,也不僅要看其賺了多少,增長多少,更要看其耗費了股東多少投入,消耗了多少資源。有一些企業增長很快,但ROE(凈資產收益率)一直不高,甚至低於資本成本,那麼這類企業與其說是在成長,不如說是在毀滅股東價值。我們也分析過,在中國股市的高估值條件助推下,可以輕松地通過堆積資產、合並報表就製造出一個高速成長的公司,但這類公司並沒有表現出什麼經營上的成就。在很多重組案例中,我們看到通過直接的資產置換可實現一個上市公司的改頭換面、業績成倍增長,但這大多其實是玩了個騰籠換鳥的游戲而已,其實也不僅沒有多少經營成就,當然對社會而言也沒有增加什麼價值。近幾年,對於如何看待央企的經營成就時,國資委已經意識到原有的觀點存在不足之處,其已要求央企在2010年全面開展經濟增加值(EVA)考核工作。目前來看,以現金流量、分紅、ROE、EVA等等這些績效考核指標則更能夠准確地反映企業的經營成就,從而引導企業更加關注長遠利益。
④:以全新視角考核公司經營層績效
這其實是在正確理解企業經營成就基礎之上的自然邏輯推導,我們的很多績效評價和薪酬掛鉤機制往往都是和企業的利潤總額,以及與利潤增長掛鉤的,這就鼓勵企業經營層一味地把企業做大,不斷融資、不斷並購擴張,但很多時候是損害股東利益的,因為這樣能提高企業利潤,實現快速增長,相應經營層也能取得更多獎金,從有機增長的角度,我們認為更合理的做法是在設計績效獎勵機制時,薪酬應該更多地與ROE、EVA等績效掛鉤,不能光看公司盈利多少,增長多少,更要看經營層創造了多少價值,其有機增長的成分與增速是多少等等指標,從而建立起一個更加正確的薪酬績效考核體系。在這個體系下,那些毀滅價值的經營層不僅不應得到獎賞,反而應該為其資本浪費和無效經營負責。
在國內市場上以前鮮有上市公司的績效考核觸及這一領域,但我們也欣喜地看到,萬科作為第一批深入考察績效體系的上市公司,已經將公司的ROE增長作為經營層獲取股權激勵的前提。我們相信隨著有機增長理念的推廣,將會有越來越多的上市公司將經營層的績效考核乃至薪酬激勵計劃更多的與ROE(凈資產收益率)、EVA(經濟增加值)等掛鉤,共同推動企業的有機增長,提高中國企業的整體質量。 誠心為你解答,給個好評吧親,謝謝啦
⑶ 中國股票市場交易資料庫查詢系統
是國泰安信息技術有限公司 開發的CSMAR 中國股票市場交易資料庫
⑷ 美股中現在股價五十美元左右是哪一個
美國股票中現在股價五十美元的左右的。在股票App列表上有很多,你可以自己進行查看。
⑸ 正螺旋效應是怎麼產生的
滬深A股市場價格混沌特性研究
Study on Chaos process of stock price in Shanghai and Shenzhen A shares Stock market
研究領域: 金融學
1、前言
現代金融經濟學理論假定投資者是理性的,證券價格等於其內在「基本價值」,在這種理想的市場環境中,市場是有效率的。Fama(1970)提出有效市場假說(Efficient Market Hypothesis,EMH),認為在一個有效率的市場中,證券的價格充分反映了所有可獲得的信息。為了檢驗市場是否有效,所採用的方法一般是通過檢驗證券價格收益率序列是否符合隨機遊走模型。關於市場效率的實證研究持續了近半個世紀,但結論仍然是存在極大爭議的。
自然科學的研究成果表明,一個非線性正反饋系統的演化過程可能產生混沌(Chaos)。許多經濟行為模式都是非線性的,例如,投資者對風險與收益的偏好、市場參與者之間的決策博弈、一些經濟合同及金融工具的選擇性條款等。行為金融學派認為,投資者並非完全理性的,而是存在「代表性直覺(Representativeness heuristic)」等認知偏差(Kahneman 與 Tversky,1979),在這些認知偏差影響下,由於羊群效應(Scharfstein 與 Stein,1990)、外推預期等因素,證券市場存在正反饋機制(De Long等,1990b)。因此,證券價格形成過程中,存在非線性正反饋機制, 在這種機制的驅動下,證券價格有可能出現混沌(Chaos)現象,使證券價格的演變表現出復雜性(Complexity)。
混沌概念是E.Lorenz(1963)最早在研究大氣運動時提出的,它是指確定性系統的內在不規則的、永不重復的非周期性運動,這種系統存在內在非線性正反饋動力,其定常狀態是一種性態復雜、紊亂但卻使終有限的運動狀態,且系統的運動路徑受系統初始條件及參數影響很大。混沌表面上看起來像隨機運動,它能通過所有傳統的隨機性檢驗,例如,在許多計算機系統中,類似於Logistic映射這樣的混沌過程演算法就被作為偽隨機數發生器(Pseudo Random Number Generators)產生隨機數序列。混沌貌似隨機性(Randomness),但它不是隨機性。隨機性是隨機過程,是雜訊擾動引起的。而混沌則是由內在確定性的非線性正反饋引起的,因此也被稱為確定性混沌(Deterministic Chaos)。
混沌的概念提出以後,對現代金融經濟學中有效市場理論的沖擊是巨大的。Fama(1970)通過檢驗證券價格收益率序列在統計上能通過隨機行走模型檢驗,從而認為市場是有效的。但是,如果證券價格收益率序列存在確定性混沌過程,它在數學上也完全能夠通過所有隨機性檢驗,但它卻不是隨機運動,而是受內部確定性過程驅動,這樣,傳統金融經濟學有效市場理論的基礎將變得十分脆弱。
本文將簡要回顧混沌理論的研究成果及其在金融市場研究中的應用,並對滬深A股市場價格的混沌特性進行實證研究。本文的研究表明,滬深A股市場存在低維確定性過程。
本文餘下部分安排如下,第二部分是對混沌理論及相關研究成果進行簡要回顧,第三部分對滬深A股市場股票價格混沌特性進行實證研究,第四部分是全文的總結。
2、混沌理論及證券價格的混沌特性
Lorenz(1963)在研究氣象預測時發現,大氣運動這樣的復雜系統存在混沌過程,在一定的條件下,系統運動的軌跡將是圍繞兩個不動點(即奇異吸引子,Strange Attractor)的發散的螺旋,並局限在一個有界的、體積為零的曲面上,進行不斷無規則的振盪。這種不規則的來回振盪,好像飛蛾看到兩個光源,飛向一個光源,當靠近時感到太熱又飛向另一光源,如此不規則地來回飛騰,其飛行的軌跡永不重復。由於它的形狀類似蝴蝶的雙翼,所以也被稱為Lorenz蝴蝶結,如圖1所示。
圖1 Lorenz 蝴蝶結
周期運動或周期性振盪是大量存在的,但上述Lorenz過程是非周期振盪,好像永不結束的過程,然而它既不發散也不消失,一直是不規則的振盪。這種振盪的軌跡在三維相空間上是螺旋線,非常密集的曲線在無窮多層平面上呈分形結構(Fractal Structure,參見Mandelbrot, 1985),無窮長,且對初始條件敏感,初始條件中無足輕重的誤差能夠被系統迅速放大,導致系統的演變路徑大相徑庭。正如Lorenz 所指出的那樣:「巴西一隻蝴蝶的扇動可以引發得克薩斯洲的颶風」,即所謂「蝴蝶效應(Butterfly Effect)」。
混沌是作為確定性過程與隨機性過程的橋梁,確定性過程是完全可預測的,而隨機性過程則是完全不可預測的,而混沌過程則是界於確定性過程與隨機性過程之間。由於混沌過程對初始條件敏感,初始細微的誤差可以成倍地放大,因此,對於長期來看,系統的演變是不可預測的。但是,如果初始條件保持穩定,運用混沌過程對系統的短期演化狀態進行預測,得到的結果將比採用線性隨機過程可能得到的預測結果精確得多,因此,混沌過程對經濟分析與預測的意義是明顯的。這可以解釋為什麼傳統經典金融理論認為奉行圖表分析的技術分析是無意義的,但在金融市場仍然存在為數眾多的投資者採用技術圖表分析,追隨證券價格趨勢(Murphy, 1986),而且這些交易者並不像傳統理論所認為的那樣,在與理性交易者長期博弈過程中,這些交易者將因遭受虧損而被趕出市場。
在行為金融學分析框架下,由於證券市場投資者並非完全是古典意義上的理性經濟人,投資者存在認知偏差,對同一事件不同投資者具有不同的價值判斷,從而表現出不同的決策行為。事實上,按照Kahneman 與 Tversky(1974,1979)提出的前景理論(Prospect Theory),各類投資者的風險偏好並不是固定不變的,存在風險偏好的反轉。投資者的價值函數是根據參考點進行定義的,在贏利時是凹函數,在虧損時是凸函數,即在贏利時是風險厭惡型的,而在虧損時是風險追求型的,而且在虧損區間比在贏利區間更陡峭,人們對虧損比對贏利更加敏感。
此外,在前景理論中,投資者權重函數也是非線性的。在極端低概率及極端高概率處,權重函數都存在跳躍,某一事件如果其發生的概率極端地高,明顯地接近於1,則決策者在編輯階段將明確地將其視為確定性的事件,相反,如果某一事件發生的概率極端地小,接近於零,則決策者在編輯階段可能就將其忽略。因此,人們傾向於對那些極端不可能的事件或者忽略或者高估,而對於一些極端高概率的事件則或者忽視或者誇大。
投資者在決策時存在保守主義(Edwards, W., 1968),不會輕易對新收到的信息做出反應,除非人們確信得到足夠的信息表明環境已經改變。而且投資者的行為模式一般是當環境的變化已經達到一定閥值以後,才一起對所有的信息集中做出反應。例如,對理性投資者來說,其對證券的需求並不完全與證券價格偏離基礎價值的程度呈線性關系。在投資實務中,證券分析師與投資經理會經常設定一個他們認為安全的價格線, 價格在此安全價格線以上, 他將進一步等待, 而一旦價格低於這一預先判定的價格時, 他們將迅速大量買入。例如,價值投資理論的創立者本傑明•格拉厄姆(Benjamin Graham)特別強調投資的安全邊際(Safety Margin),只有投資者的預期收益達到一定程度以上時,才會建議買入證券。
總之,在證券市場,由於雜訊交易者的存在、從眾心理及羊群效應等產生的群體性非理性行為可能形成正反饋效應,這種正反饋機制會使證券價格的演變產生十分復雜的運動,在一定條件下產生混沌過程,導致證券價格收益率分布呈現分形等復雜結構,表現出高度的復雜性。例如,價格的突然大幅度波動則導致分布產生胖尾現象,而混沌及局部奇異吸引子的出現,導致證券價格膠著於一些價格附近,來回進行無規則的反復振盪,則使證券價格分布出現局部尖峰的特徵。
現實市場中的非線性特性將進一步增加證券價格形成的復雜程度,使市場交易在本質上變成一種不同投資者之間的多輪博弈。由於證券價格的演變可能形成混沌過程,系統的初始狀態對證券價格的演變路徑影響很大,初始狀態細微的差別將導致長期結果的巨大差別,即所謂「失之毫釐,謬以千里」的蝴蝶效應。因此,就長時間跨度來說,證券價格波動的方向及波動的幅度都是難於預測的。股票價格的波動形式既可以呈現出穩定的均衡(即通常所說的「盤整」),也可以是非周期性的振盪,還可以突然出現暴發性上漲(泡沫)或者大幅度下跌(泡沫破滅或者負泡沫)等劇烈波動,局部可能與整體相似,但永不重復且不可逆轉,呈現分形等復雜且不規則的分形結構,表現出高度的復雜性。混沌過程所擁有的「蝴蝶效應」還可以解釋一些偶然性局部事件所引發的全球性金融市場異常波動,例如,上世紀90年代初的「墨西哥金融危機」及90年代後期的東南亞金融危機等。如果證券價格存在混沌特性,則意味著證券價格變化在短期內存在一定的可預測性,而進行長期預測則是極為困難的,從投資策略角度看,這意味著基於證券價格短期變化的交易者可能存在生存的空間。
在實證研究方面,Fama 1970年提出有效市場假說以後,關於資本市場效率的實證研究不勝枚舉,大量經驗研究表明,證券價格收益率分布不是高斯分布,具有尖峰與胖尾的特點,經常產生一些極端數值,而且,按不同的時間間隔建立收益率分布曲線,得到的都具有相似的尖峰與胖尾的特徵,具有時間分形的特徵。Mandelbrot(1972)提出重標極差分析法(Rescaled Range Analysis, R/S分析方法)以後,許多學者運用R/S方法研究了股票市場效率及檢驗股票市場價格是否存在記憶特性。這方面的文獻包括:Peters(1989,1991,1996),Lo(1991), Pandey,Kohers與Kohers(1998)等。這些經驗研究結果顯示,金融數據具有長期記憶的特徵,即是說,股票當前價格運動受到以前的價格運動的影響。這意味著股票價格存在一定時間區間內的趨勢持續效應,這也在一定程度上印證了股票價格形成過程中存在正反饋效應。
Lorenz(1963)提出混沌理論以後,Grassberger and Procaccia(1983a)提出了關聯維數(Correlation Dimension)的分析方法,用以識別時間序列是否存在低維確定性過程。Scheinkman 與Lebaron(1989)根據美國證券價格研究中心(CRSP)提供的以市值為權重的美國股票收益率指數,對始於1960年代初期的共1226個周收益率數據考察了其關聯維數(Correlation Dimension, CD), 他們研究得到CD值為6,從而認為美國股票周收益率序列總體表現出了非線性關聯,並認為這種非線性關聯可以解釋金融資產分布的尖峰、胖尾等特性。Brock與Back(1991)再度擴展了Scheinkman 與LeBaron的研究,得到的CD值在7-9之間,因此,也拒絕了股票價格收益率是獨立同分布(Independent Identical Distribution,IID)的假設,傾向於支持股價收益率分布存在低維確定性過程的備擇假設,但他們同時指出,並不能就此認為存在混沌過程。Urrutia等(2002)的研究則提出了針鋒相對觀點,他們研究了1984年至1998年期間美國保險公司股票收益率特性,研究表明保險公司股票收益率存在非線性特徵,並且進一步驗證導致這種非線性的原因就是低維混沌過程。總體而言,這些經驗研究提供了實質性的證據表明,股票、匯率、商品期貨等金融數據序列存在非線性結構,但就是否明確存在低維確定性混沌過程,則結論不完全一致,仍然存在爭論。
對於中國大陸股票市場,戴國強等(1999)對上證綜合指數及深證成份指數進行R/S分析,計算得到Hurst指數分別為0.661和0.643;史永東(2000)所作的R/S分析顯示,上海證券交易所股票市場的Hurst指數為0.687,而深圳證券交易所股票市場的Hurst指數為0.667;曹宏鐸等(2003)計算的深證證券交易所股票市場日收益率、周收益率、月收益率的Hurst指數分別為0.6507,0.7000,0.6906及0.7576。上述經驗研究表明,上海及深圳股票市場並不呈隨機行走的特徵,而具有狀態持續特徵,同時也意味著中國股票市場不是弱式有效的。
事實上,關於中國股票市場是否弱式有效,一致存在極大爭議。正如張亦春與周穎剛(2001)所意識到的那樣,一方面,多數研究人士憑經驗就感覺到中國股票市場投機性強,遠未達到有效狀態。例如,滬深A股市場近年來上市公司財務造假不斷案發 ,莊家操作市場盛行 ,股價嚴重脫離內在價值,上海A股市場在2000年及2001年平均市盈率高達60多倍,被很多學者斥為「賭場」,宣稱這樣一個市場已達到弱式有效狀態,確實讓人們難以接受。另一方面,許多學者所作的實證研究卻表明,證券價格收益率序列十分接近隨機行走模型,因而無法有力地拒絕有效市場假設。經驗感覺與理論研究結論大相徑庭,這其中的原因究竟是什麼?到底是現實錯了?還是學術理論研究有問題?混沌的思想讓我們豁然開朗!因為,如果證券價格存在混沌過程,或者是在混沌過程基礎上迭加一個隨機過程,那麼,市場顯然是無效的,但證券價格收益率序列同樣能通過隨機性檢驗。例如,假設證券價格波動序列是一個Logistic 映射過程,它顯然是一個確定性的混沌過程,但是,這一過程在許多計算機系統是被當作偽隨機數發生器,常規的檢驗方法根本無法識別確定性過程,而是將其視為隨機序列!如果這樣的話,所有通過考察證券價格是否能夠通隨機性檢驗的方法來考察資本市場有效性的研究,其理論基礎及研究結論都將受到質疑。
3、滬深A股市場價格混沌特性實證研究
本文同時採用R/S分析方法及關聯維數(Correlation Dimension,CD)分析方法考察滬深A股市場的非線性特徵。通過R/S分析方法能夠識別出證券價格序列是否存在持續效應,這在某種程度上可以驗證股票市場是否存在正反饋交易機制,正反饋過程是產生混沌的前提。採用關聯維數分析,可以識別股價序列是否存在混沌特徵。我們的數據來源於乾隆公司的錢龍資訊系統。
3.1 R/S分析
Hurst(1951),Mandelbrot(1972)及Lo(1991)等所發展並完善了赫斯特指數(Hurst Index)的分析方法,即重標定域(Re-scaled range,R/S)分析方法。
赫斯特指數(H)可以用來識別時間序列的非隨機性, 還可以識別序列的非周期性循環,因而可以用於識別時間序列的非線性特徵。如果序列的赫斯特指數不等於0.50,則觀測就不是獨立的,每一個觀測值都帶著在它之前發生的所有事件的「記憶」,這種記憶不是短期的,它是長期的,理論上講,它是永遠延續的。雖然遠期事件的影響不如近期事件的影響大,但殘留影響總是存在的。在更寬泛的尺度上,一個表現出赫斯特統計特性的系統是一長串相互聯系的事件的結果。今天發生的事情影響未來,今天我們所處的地位是過去我們所曾處的地位的一個結果。
關於Hurst赫斯特指數的詳細計算參見文獻Mandelbrot(1972)及Lo(1991)等,其計算過程如下:
1.對一個時間序列 ,考察長度為n的時間窗口內的子序列, ,n=1,2,3,……K,計算序列的平均值為:
………………………………(1)
2.計運算元序列偏離均值的差值
………………………………(2)
顯然, 的均值為零,這是重標定或歸一化(標准化)。
3.計算偏離均值的累加值
……………………………(3)
4.計算時子序列的域
………………………………(4)
5.計算采樣子序列的標准差
………………………………(5)
6.計運算元序列重標定域
……………………………(6)
7.求解全序列 的均值
………………………………(7)
8.求解赫斯特指數
與 有冪關系,即:
……………………………(8)
……………………………(9)
在對數坐標上,設水平軸n,縱軸為 ,對 與 進行回歸, 則線性回歸的斜率為赫斯特指數。
我們選取上海證券交易所A股綜合指數從1990年12月19日至2003年12月23日,以及深圳證券交易所A股綜合指數從1992年10月4日至2003年12月23日期間的交易數據,分別計算其日收益率及周收益率序列的赫斯特指數,從而考察滬深A股市場的證券價格是否存在非線性特徵。
採用上述方法,計算得到滬深A股綜合指數的赫斯特指數,如表1所示,在圖2—圖5中,還詳細地列出了R/S分析圖。
表1 滬深A股綜合指數Hurst 指數
上海A股指數 深圳A股指數
日收益率序列H值 0.66(t=336) 0.63(t=306)
周收益率序列H值 0.69(t=84 ) 0.69(t=97 )
圖2 上證A股指數日收益率序列 圖3 上證A股指數周收益率序列
圖4 深圳A股指數日收益率序列 圖5 深圳A股指數周收益率序列
從表中數據我們可以看到,滬深A股市場的赫斯特指數無論以周數據統計還是以日數據統計,結果基本一致,均在0.60以上。H值大於0.50,意味著今天的事件確實影響明天,即是說,今天收到的信息在其被接收到之後繼續被市場計算進去, 這從另一側面印證滬深A股市場價格並不呈隨機行走狀態,收益序列之間存在一定的關聯性,這是一種持續效應(Persistence effect)。如果股價序列在前一個期間是向上運動的,則它在下一個期間將更可能繼續向上運動的趨勢,反之,在前一個期間是向下運動的,則它在下一個期間更可能持續向下運動的趨勢。股價序列的這一特性與經驗感覺是一致的,無論是國內股票市場還是全球其它地區的股票市場,典型的牛市或者熊市,並非短暫的數日或者數月,往往持續數年。而股票市場極其異常的波動,例如,美國股市1929年股災、1987年的暴跌等,均使投資者對市場的信心受到嚴重打擊,市場在其後很長一段時間深受其影響。股價的持續效應在某種程度上印證了股票市場存在的正反饋效應機制。
3.2 關聯維數分析
Grassberger 與Procaccia(1983a,1983b)提出了關聯維數(Correlation Dimension,CD)方法,用以考察時間序列的非線性特性。其基本思想是:如果一個混沌過程是n維確定性過程,則該過程將充滿n維空間,但如將其置於更高維的空間里,該過程將留下許多「洞眼」。一般地,關聯維數度量的是相空間被一組時間序列「填充」的程度,關聯維數越大,填充程度越高,表示時間序列內部結構越復雜,它類似隨機過程時間序列的程度越強。需要指出的是,我們僅對低維混沌過程感興趣。 如果股票價格真的是高復雜性的混沌過程,我們採用有限的樣本數據是永遠也無法識別出其復雜的結構的。此時,它可能與一個良好的「偽隨機數發生器」產生的數據相近,高維混沌過程與隨機過程將沒有實際意義的區別。
設時間序列 由具有 個自由度的非線性動態系統產生,可以構造 維相空間失量:
………………(10)
其中, 被稱為鑲嵌維(Embedding dimension), 為適當的時滯單位。時間序列過程在相空間的運行軌道是由一系列 維失量構成。如果該系統最終收斂為一組確定性過程,則該系統的運行軌道將收斂於相空間中維數低於 的相空間子集,即吸引子(Attractor),在這些吸引子周圍的運動是混沌過程,具有非周期性且長期運動狀態無法預測。
考慮吸引子附近的失量集合 ,關聯積分(Correlation Integral) 定義為對於任意給定的 ,那些彼此之間的距離小於 的點數對(Pairs of Points) 的數量占所有可能的點數對的比例,即:
……………………(11)
其中, ……………(12)
當 時,對任意小 ,可以預期C遵循指數冪變化規律,即:
,從而關聯冪(Correlation Exponent)可以通過對 與 對回歸計算得到:
……………………………(13)
如果系統存在確定性混沌過程,隨著鑲嵌維數的增加,關聯冪D值達到飽和值以後,將大約保持不變,這一關聯冪指數的飽和值就是吸引子的關聯維數。如果系統是隨機過程,則隨著鑲嵌維數的增加,D值亦將成比例地增加,趨向無窮大 。
圖6 上證A股指數在不同鑲嵌維空間中的關聯積分
圖7 上證A股指數關聯維
我們考察上海證券交易所A股綜合指數從1990年12月19日至2003年12月31日期間日收益率時間序列的關聯維。圖6為上證A股綜合指數在1-8維相空間中關聯積分 隨 值的變化情況。從圖中我們可以看到,在 值處於0.0003-0.005區間時, 與 的變化呈現出指數冪關系。圖7是關聯冪D隨鑲嵌維數m的變化情況,我們可以看到,隨著鑲嵌維數m超過2以後,關聯冪D值不再增加,而是穩定於大約 區間, 即上證A股綜合指數的關聯維數大約為1.4, 因此, 我們可以推測, 上證A股綜合指數存在關聯維數大約為 的低維確定性混沌過程。
相對於Scheinkman 與Lebaron(1989)及Brock與Back(1991)等計算得到的成熟資本市場關聯維數,我們計算得到的上海A股市場的關聯維數明顯更低。如果時間序列是一個低維確定性過程,則意味著時間序列在短期是具有一定的可預測性的。從這個意義上看,我們認為,相對成熟資本市場,上海A股市場指數的隨機性程度更低,而短期可預測性更強,這在某程度上也說明市場效率程度相對更低。另外,由於混沌特性,證券價格在短期具有一定的預測性,但進行長期預測則是極為困難的,從投資策略角度看,意味著基於證券價格短期變化的交易者可能存在獲取利潤的空間。
4、結論
在一個存在非線性正反饋機制的系統中,系統的演化理論上可能出現混沌過程。 證券市場由於雜訊交易者的存在、從眾心理及羊群效應等產生的群體性非理性行為,形成正反饋效應,從而可能導致證券價格的演變呈現出混沌過程,表現出復雜性。
本論文所做的實證研究表明,滬深A股市場指數的赫斯特指數大於0.5,這意味著滬深A股市場價格並不呈隨機行走狀態,收益序列之間存在趨勢持續的特性,這也在一定程度上說明了股價形成過程中存在正反饋效應。對上海A股市場指數的考察進一步表明,上海A股市場指數收益率序列存在低維確定性混沌過程,其關聯維數大約為1.4。 這一數值遠低於成熟資本市場的指標,這表明上海股票市場指數收益率序列隨機性低於成熟資本市場, 市場在短期的可預測性更強一些, 這在某種程度上表明市場的效率程度更低一些。市場存在確定性混沌過程,市場顯然是無效的,但是,由於混沌過程同樣能夠通過隨機行走模型檢驗, 我們認為, 這也許是為什麼關於資本市場效率的傳統實證檢驗結果仍然存在極大爭議的原因。因為常規檢驗方法無法區分混沌過程與隨機過程,因此,本論文認為,所有採用常規方法,通過考察證券價格是否符合隨機遊走模型,從而推斷資本市場有效性的研究,其理論基礎及研究結論均存在嚴重缺陷。由於證券價格運動的混沌特性,這意味著證券價格在短期具有一定的可預測性,但進行長期預測則是極為困難的。證券價格的這種混沌特性,從投資策略角度看,意味著基於證券價格短期變化的交易者可能存在生存的空間。
內 容 提 要
行為金融理論認為,投資者不是完全理性的,而是存在各種認知偏差。由於雜訊交易者的存在、從眾心理及羊群效應等產生的群體性非理性行為,證券市場存在正反饋效應。而且,投資者行為模式都是非線性的,在一個存在非線性正反饋機制的系統中,證券價格的演化可能出現混沌過程。
本論文所做的實證研究表明,滬深A股市場價格並不呈隨機行走狀態,而是存在非線性結構;上海A股市場指數收益率序列存在低維確定性混沌過程,其維數大約為1.4, 這一數值遠低於成熟資本市場的指標,這表明上海股票市場指數收益率序列隨機性低於成熟資本市場。由於市場存在確定性混沌過程,市場雖然是無效的,但同樣能夠通過隨機行走模型檢驗,這也從某一角度說明了,為什麼關於資本市場效率的傳統實證檢驗結果仍然存在極大爭議。由於混沌的存在,證券價格變化在短期具有一定的可預測性,但進行長期預測則是十分困難的。
⑹ csmar資料庫中有沒有知道股票是屬於哪個指數的
有。
csmar市場交易數據的開發借鑒crsp等國際知名資料庫的成功經驗,把整個股回報率,市場回報率和綜合市場回報率等數據項目直接提供給用戶使用。