㈠ 使用 Python 获取股票历史资金流向数据(大单、超大单、主力流入等)
市场主导力量在股市中尤为重要,理解主力交易数据与股价变动之间的关系对于投资者至关重要。为了深入研究这一领域,本文将展示如何利用Python技术,通过爬虫手段获取A股市场的历史资金流向数据(包括大单、小单、超大单、主力流入等信息)。这些数据将被保存为表格文件,为后续的分析提供便利。
在开始之前,请确保您的计算机已安装Python 3环境。若尚未安装,可参考相应教程进行安装。此外,您需要安装两个库:pandas和requests。通过命令行(或终端工具)执行如下代码以安装:
输入命令并按Enter键执行,直至出现“successfully”提示。
以下代码展示了获取单只股票(股票代码:600519)的历史大单交易数据,并将其保存为CSV文件(文件名与股票代码相同):
执行示例代码后,输出相关文字信息,生成的文件名在代码执行目录中,并展示文件截图。
接下来的示例代码演示了如何同时获取两只股票(代码分别为600519和300750)的历史大单交易数据,同样以各自股票代码命名CSV文件,并在代码运行目录生成文件。
总结,本文阐述了使用Python获取单只及多只股票的历史资金流向数据,并保存为CSV文件的方法。感谢您阅读本文,如果您对更多金融数据获取感兴趣,请关注我的金融数据获取专栏,以获取更多相关技巧。
㈡ 股票池如何用python构建
股票池用python构建的方法是:使用第三方平台,目前可以使用的是聚宽,对比一下聚宽、优矿、大宽网(已经倒闭了),都大同小异,选哪个都一样。
虽然这些平台都大同小异,但是代码可不能简单复制粘贴,因为底层函数库是不一样的,有可能在别的平台根本用不了某个函数,并且简单复制到自己电脑中的python的话百分之百用不了。
代码的思路是,每个月底进行调仓,选出市值最小的股票交易,去掉ST/*ST/停牌/涨停的股票,然后选择最小市值的10只,基准是创业板综指,看看结果。
python构建数据获取方法是:
这里使用为了接下来的操作需要将一定历史范围的股票数据下载下来,这里下载起始时间为20160101,截至时间为运行代码的时间范围的历史日线数据。
这里以tushare为例, tushare获取历史数据有两种方式。
第一种是以迭代历史交易日的方式获取所有历史数据,假设获取三年的历史数据,一年一般220个交易日左右,那么3年需要请求660多次左右,如果以这种方式的话,就下载数据的时间只需要1分钟多点的样子。
第二种是以迭代所有股票代码的方式获取所有历史数据,股票数量有大概3800多个,需要请求3800多次,但是在积分有限的情况下一分钟最多请求500次,也就意味着仅下载数据的时间至少需要大概8分钟时间。
理论上,你获取的历史范围超过17.3年,那么使用第一种方式才比第二种方式快。
㈢ 股票软件用什么语言
股票软件主要用C++或者Python语言进行开发。
详细解释如下:
一、股票软件开发语言概述
股票软件是用于股票交易、分析、预测的工具,其开发涉及多种编程语言。其中,C++和Python是两种常见的选择。
二、C++在股票软件中的应用
C++是一种面向对象的编程语言,因其高效、灵活的特性而被广泛用于股票软件的开发。股票软件需要处理实时数据、进行复杂的算法计算,C++的高性能可以满足这些需求。此外,其强大的库支持也有助于开发者快速构建功能丰富的股票软件。
三、Python在股票软件中的应用
Python是一种解释型语言,以其简单易学、开发效率高的特点受到开发者的青睐。在股票软件开发中,Python可以用于实现各种功能,包括数据分析、可视化、策略回测等。此外,Python有许多第三方库,如Pandas、NumPy、Matplotlib等,可以方便地处理金融数据、进行数据分析及可视化。
四、总结
股票软件的开发可以选择多种编程语言,其中C++和Python是较为常见的选择。C++因其高效、灵活的特性而适用于处理实时数据和复杂算法;而Python则因其简单易学、开发效率高以及丰富的第三方库而广泛应用于数据分析、可视化等方面。开发者可以根据项目需求和自身擅长选择合适的编程语言进行开发。
㈣ 如何搭建自己的股票高频数据库(Python)
二话不说,先上结果。本文阐述了以下几个方面:
下图是编写好的数据接口提取数据的示例。该数据接口支持多标的、多品种(股票、指数一起提取)、多字段、多时间提取。并且支持不复权、后复权、等比前复权提取(前复权不太实用就没有做)。而且速度巨快,没有数据量的限制。如果你也觉得很香,请接着往下看,本文将手把手教你搭建这样的数据库。
数据库搭建需要用到一些第三方库,在各位动手之前请安装:
本文的方法不涉及到常用的数据库(不涉及MySQL、MongoDB),思路非常简单,请各位放心食用。主要是使用pyarrow来加强代码性能。虽然不涉及到常用数据库,但这是我目前能想到的最有效的方法。
正所谓“巧妇难为无米之炊”,想搭建高频数据库,就需要一个数据源获取高频数据。在此,我推荐聚宽作为我们的数据源。 聚宽账号的申请请点这里。新人用户有每日100万条数据,DataFrame的一行算一条,请各位务必珍惜自己的数据量。(不过我是正式用户了,每天两个亿,就不太在意这一点哈哈。)
非会员的100万条数据量能干啥?我们来简单计算以下:每个交易日有240条数据(4个小时,240条分钟k线),假设一年有250个交易日,每只股票每年需要占用60000条数据。也即一日的数据量能够提取一只股票16年(100/6=16.66667)左右的股票分钟数据。相当于数据库的搭建过程还是相当艰难的,每天耗尽数据量只能下载好一只股票的数据。(白嫖是这样的啦,如果有条件可以联系聚宽客服,购买正式账号)
我们这里假设我们的数据库记录2015年至今的股票分钟数据。(当然我自己的数据库记录的是2005年1月1日的全A股分钟数据)这里,我们以贵州茅台(股票代码 600519.XSHG)为例,演示数据的提取与保存。先看看数据如何从接口提取出来(这里需要用到各位申请的聚宽账号):
来看看代码运行的结果。
数据提取后,自然需要把数据保存起来。pandas.DataFrame有很多方便的方法可以将数据保存下来。为做对比,这里将数据保存为csv格式和ftr格式。
相对应的,我们可以用这样的代码将保存好的数据读取进来。虽然pandas有read_feather函数,可以直接将ftr文件读取进来,但这个速度比直接调用pyarrow的更慢一些。考虑到代码性能,这里直接从pyarrow调用read_feather函数。
虽然两种格式都能将数据完整地保存下来,但读取速度上,ftr文件占据着绝对的优势。因此,我们考虑到数据库的性能以及数据库所占空间,我们选择使用ftr格式储存数据。feather正如他的名称,像羽毛一样轻,它所占的空间会比csv更小。这是一种不占空间,读取速度又快的文件格式,太香了!
在前文中我提到了行情数据的提取、保存方法,并强调了一定要提取不复权的数据。这是为了与复权因子结合,还原各种形式的复权数据。至于复权的详细定义,请参看 网络。
随便打开一个股票看盘软件,大致会有3种复权方式,即前复权、不复权、后复权。按照我自己的想法,可以这么理解:
在这样的情况下,如果记录价格数据,记录前复权的数据是最没有意义的,因为隔一段时间,历史的价格就全变了。如果只做收益率相关研究的话,记录后复权数据是可以的。然而,我们这里要搭建数据库,所以采取“记录不复权数据”加上“复权因子”还原的方法。
我们着手提取复权因子。在提取之前,不妨再理顺一下思路:
思路理顺了,我们来看看后复权因子的提取方法:
有了复权因子,如何计算复权价格?请接着看第3节——数据接口编写。
提取了行情数据和复权因子数据,应当找个地方把它们存放起来。我分了两个文件夹来保存我的数据。
在你搜集了足够多只股票的分钟数据后,就能够来到这一步,编写一个数据接口方便调用数据。
数据接口的编写重难点在于股票价格复权的计算。这里同样以贵州茅台(股票代码 600519.XSHG)为例来演示如何进行复权的计算。复权的核心在于下面这个公式:
[公式]
先来看看我们如何提取贵州茅台在一段时间(这里为2015-01-01至2021-09-08)内的后复权分钟数据。(这里千万不能将交易量和交易额一起拿去复权了。只有价格数据需要复权。(我不太确定交易量要不要,要的话我就改一改嘿嘿))
看看代码运行的效果。
那么,等比前复权该如何实现呢?其实很简单,只需要在框定了复权因子的时间后,让复权因子全序列除以最后一个复权因子,即得到前复权因子。将这个前复权因子乘上不复权的价格,即可得到等比前复权的价格数据。
以下是数据接口的全部代码,里面有挺多细节(但挺简单的),我就不再赘述了。
要更新数据库的数据,则是将数据库中的所有数据文件逐个读取进来,取最后一天作为start_date,然后取今天作为end_date。将新数据合并到原有的DataFrame中并保存就完成了数据的更新。数据更新比较耗时,也需要一定的数据量。不过,不论如何,我们来看看数据更新的代码。
在编写完这些代码后,我把这些代码整合成了一个python文件【high_freq_db.py】放在了site-package中,方便以后数据的调用和更新。
亲爱的读者,感谢你读到这里。本文讲述了我搭建我的股票高频数据库的方法。毕竟我的专业是金融而非计算机,难免会有不足的地方,恳请大家在评论区指出。(华工封校了,我也快疯了,所以一天写了两篇东西。。。。)
另外,这个数据库完全搭建起来之后会非常大(行情数据占80GB左右,包含指数和个股ftr文件),维护起来也比较费时费力,就不对外公布了(我也不知道怎么公布【手动捂脸】)。如确有需要,可以和我私信。
再次感谢大家的阅读!
——————————————————
2022年5月27日更新:
有不少小伙伴想要这个数据,目前我已经整理好上传至网络网盘啦。数据和完整代码私聊获取。
获取数据请只用于学习,勿直接用于投资决策!
㈤ python 设计一个名为Stock的类来表示一个公司的股票
class Stock():
def __init__(self):
self.__no = ""
self.__name = ""
self.previousClosingPrice = 0
self.currentPrice = 0
def creatStock(self,stockInfo):
self.__no = stockInfo[0]
self.__name = stockInfo[1]
self.previousClosingPrice = stockInfo[2]
self.currentPrice = stockInfo[3]
def getStockName(self):
return(self.__name)
def getStockNo(self):
return(self.__no)
def setPreviousClosingPrice(self,price):
self.previousClosingPrice = price
def getPreviousClosingPrice(self):
return(self.previousClosingPrice)
def setCurrentPrice(self,price):
self.currentPrice = price
def getCurrentPrice(self):
return(self.currentPrice)
def getChangePercent(self):
return((self.currentPrice - self.previousClosingPrice)/self.currentPrice)
stock = Stock()
stock.creatStock(["601318","中国平安",63.21,64.39])
print(stock.getStockNo())
print(stock.getStockName())
print(stock.getCurrentPrice())
print(stock.getPreviousClosingPrice())