1. 股票,期望收益率,方差,均方差的计算公式
1、期望收益率计算公式:
HPR=(期末价格 -期初价格+现金股息)/期初价格
例:A股票过去三年的收益率为3%、5%、4%,B股票在下一年有30%的概率收益率为10%,40%的概率收益率为5%,另30%的概率收益率为8%。计算A、B两只股票下一年的预期收益率。
解:
A股票的预期收益率 =(3%+5%+4%)/3 = 4%
B股票的预期收益率 =10%×30%+5%×40%+8%×30% = 7.4%
2、在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。
解:由上面的解题可求X、Y的相关系数为
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
2. 某股票期望收益率为4%,无风险利率为6%,市场收益率是16%.其β值是多少
利用CAPM计算, 股票期望受益率=无风险利率+beta*(市场受益率-无风险利率)
数字带进去,解个方程就出来了。
3. 知道A, B两只股票的期望收益率分别是13%和18%,贝塔值分别为0.8和1.2
设市场收益率为RM,无风险收益率为RF,则
13=RF+0.8*(RM-RF)
18=RF+1.2*(RM-RF)
解二元一次方程组,得
RM=15.5
RF=3
同期,无风险利率为3%,市场组合收益率为15.5%
例如:
期望收益率=无风险收益率+贝塔系数*(风险收益率-无风险收益率)
实际上把证券B减去证券A就能得到贝塔系数为1时,风险收益率与无风险收益率的差值。由于证券C比证券B多出0.5倍贝塔系数乘以(风险收益率与无风险收益率的差值)
故此证券C的期望收益率=证券B期望收益率+(证券C贝塔系数-证券B贝塔系数)*(证券B期望收益率-证券A期望收益率)/(证券B贝塔系数-证券A贝塔系数)=12%+(2-1.5)*(12%-6%)/(1.5-0.5)=15%
(3)Ibm公司股票的期望收益率为扩展阅读:
市场收益率的变化决定着债券的发行价格。票面利率是发行之前确定的。而资金市场的利率是不断变化的,市场收益率也随之变化。从而使事先确定的票面利率与债券发行时的市场收益率发生差异,若仍按票面值发行债券就会使投资者得到的实际收益率与市场收益率不相等相差太多。
因此,需要调整债券发行价格。以使投资者得到的实际收益率与市场收益率相等或略高,当市场收益率高于票面的利率时,债券应以低于票面的价格发行;当市场收益率低于票面利率时,债券应以高于票面值的价格发行。
4. 若某一股票的期望收益率为12%,市场组合期望收益率为15%,无风险利率为8%,计算该股票的β值。
该股票相对于市场的风险溢价为:12%-8%=4%
市场组合的风险溢价为:15%-8%=7%
该股票的β值为:4%/7%=4/7
期望收益率=无风险利率+β值*(市场组合期望收益率-无风险利率)
所以,β值=(期望收益率-无风险利率)/(市场组合期望收益率-无风险利率)
即:β值=(12%-8%)/(15%-8%)=0.57
(4)Ibm公司股票的期望收益率为扩展阅读:
期望收益率是投资者将预期能获得的未来现金流折现成一个现在能获得的金额的折现率。必要收益率是使未来现金流的净现值为0的折现率,显然,如果期望收益率小于必要收益率,投资者将不会投资。当市场均衡时,期望收益率等于必要收益率。
而实际收益率则是已经实现了的现金流折现成当初现值的折现率,可以说,实际收益率是一个后验收益率。
期望值的估算可以简单地根据过去该种金融资产或投资组合的平均收益来表示,或采用计算机模型模拟,或根据内幕消息来确定期望收益。当各资产的期望收益率等于各个情况下的收益率与各自发生的概率的乘积的和 。
投资组合的期望收益率等于组合内各个资产的期望收益率的加权平均,权重是资产的价值与组合的价值的比例。
5. 求文档: 股票A的期望收益率为12%,而封校值B等于1,B股票的期望收益率为13%,B
(1)根据CAPM模型,有E(rA)=5%+(11%-5%)=11%
E(rB)=5%+1.5×(11%-5%)=14%
因为14% 〉11%,所以买B股票更好
(2)A股票的α值为12%-11%=1%
B股票的α值为13%-14%= -1%
6. 求股票的期望收益率和标准差,方差
E(R)=0.1*0.3+0.05*0.7=0.065
方差[30%*(10%-0065)^2+70%*(12%-5%)^2=
标准差平方等于方差
7. 1、已知甲股票的期望收益率为12%,收益率的标准差为16%;乙股票的期望收益率为15%,
这是股票吗?计算比数学还复杂,阅读比语文还深。
8. 某公司股票的β值为0.7,现价为50,一年后的期望价格为55并派发股利1元,市场市场组合的期望收益
ri=rf+[E(rm)-rf]β
一年后的期望收益率:(55-50)/50=0.2
现估收益率:ri=0.08+(0.15-0.08)*0.7=0.129
期望收益率>现估收益率
所以被高估,应该卖出
9. 求股票期望收益率
股票风险溢价从来没有参考意义,期望收益更是无中生有,不过是利益陷阱的诱饵罢了。
10. 某企业股票的β系数为1.2,无风险利率R为10%,市场组合的期望收益率为12%,则该企业普通股留存收
选C,有这样一个计算公式:K=R+(Rm-R)* β
Rm就是市场组合的期望收益率。