1. 怎样用 Python 写一个股票自动交易的程序
股票自动交易助手提供了一个 Python 自动下单接口,参考代码
#股票自动交易助手Python自动下单使用例子
#把此脚本和StockOrderApi.pyOrder.dll放到你自己编写的脚本同一目录
fromStockOrderApiimport*
#买入测试
#Buy(u"600000",100,0,1,0)
#卖出测试,是持仓股才会有动作
#Sell(u"000100",100,0,1,0)
#账户信息
print("股票自动交易接口测试")
print("账户信息")
print("--------------------------------")
arrAccountInfo=["总资产","可用资金","持仓总市值","总盈利金额","持仓数量"];
foriinrange(0,len(arrAccountInfo)):
value=GetAccountInfo(u"",i,0)
print("%s%f"%(arrAccountInfo[i],value))
print("--------------------------------")
print("")
print("股票持仓")
print("--------------------------------")
#取出所有的持仓股票代码,结果以','隔开的
allStockCode=GetAllPositionCode(0)
allStockCodeArray=allStockCode.split(',')
foriinrange(0,len(allStockCodeArray)):
vol=GetPosInfo(allStockCodeArray[i],0,0)
changeP=GetPosInfo(allStockCodeArray[i],4,0)
print("%s%d%.2f%%"%(allStockCodeArray[i],vol,changeP))
print("--------------------------------")
2. 有没有会用Python编写一个简单的建模股票价格的小程序能够对股票数据进行简单预测即可!求助!
虽然懂python 但是不懂股票,
采用random()可以么,哈哈
3. 怎样用 Python 写一个股票自动交易的程序
网址都没有给出怎么测试呢? 这个应该是服务器生成的token吧,可以urllib2抓一下,如果抓不到的话那么他可能用的js动态加载,这个得分析js源码了,如果他用了flash来算出这个值的(我记得酷狗就是这么做的),那么恭喜你,不能算出这个值了
4. 股票池如何用python构建
股票池用python构建的方法是:使用第三方平台,目前可以使用的是聚宽,对比一下聚宽、优矿、大宽网(已经倒闭了),都大同小异,选哪个都一样。
虽然这些平台都大同小异,但是代码可不能简单复制粘贴,因为底层函数库是不一样的,有可能在别的平台根本用不了某个函数,并且简单复制到自己电脑中的python的话百分之百用不了。
代码的思路是,每个月底进行调仓,选出市值最小的股票交易,去掉ST/*ST/停牌/涨停的股票,然后选择最小市值的10只,基准是创业板综指,看看结果。
python构建数据获取方法是:
这里使用为了接下来的操作需要将一定历史范围的股票数据下载下来,这里下载起始时间为20160101,截至时间为运行代码的时间范围的历史日线数据。
这里以tushare为例, tushare获取历史数据有两种方式。
第一种是以迭代历史交易日的方式获取所有历史数据,假设获取三年的历史数据,一年一般220个交易日左右,那么3年需要请求660多次左右,如果以这种方式的话,就下载数据的时间只需要1分钟多点的样子。
第二种是以迭代所有股票代码的方式获取所有历史数据,股票数量有大概3800多个,需要请求3800多次,但是在积分有限的情况下一分钟最多请求500次,也就意味着仅下载数据的时间至少需要大概8分钟时间。
理论上,你获取的历史范围超过17.3年,那么使用第一种方式才比第二种方式快。
5. 如何建立一个股票量化交易模型并仿真
用python:金融想法->数据处理->模型回测->模拟交易->业绩归因->模型修正。
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化交易具有以下几个方面的特点:
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
6. 如何用python炒股
你就是想找个软件或者券商的接口去上传交易指令,你前期的数据抓取和分析可能python都写好了,所以差这交易指令接口最后一步。对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。还有的法是wind这样的软件也有直接的接口,支持部分券商,但也贵,几万一年是要的,第三种就是走野路子,鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。还有一种更野的方法,就是找到这些软件的关于交易指令的底层代码并更改,我网络看到的,不知道是不是真的可行。。散户就这样,没资金就得靠技术,不过我觉得T+1的规则下,预测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧
7. 股票交易模型怎样建立
交易模型即交易理论、交易方法,投资者构建一套完整的交易模型需要经过以下几个步骤:
1、认清自己的投资偏好,是对自己的一个定位,投资者可以根据自己的性格特点和交易风格先把自己的交易流派区分清楚:趋势交易者,短线交易者,日内交易者等。
2、在认清自己的投资偏好之后,选择有针对性的技术指标进行学习,比如,对于趋势交易者,可以学习均线理论,根据均线理论中多头排列的特点进行买卖。
3、纸上得来终觉浅,绝知此事需躬行,投资者可以先进行模拟操作,检验技术指标的正确性,对自己的交易方法进行总结,归纳出自己交易方法的框架和思路,如果发现自己以往的交易方法和自己的交易流派有冲突时最好重新总结归纳另一套方法。
4、模拟检验完成之后,进行实战,在实战中,投资者应严格按照交易模型执行。
拓展资料:
股票(stock)是股份公司所有权的一部分,也是发行的所有权凭证,是股份公司为筹集资金而发行给各个股东作为持股凭证并借以取得股息和红利的一种有价证券。股票是资本市场的长期信用工具,可以转让,买卖,股东凭借它可以分享公司的利润,但也要承担公司运作错误所带来的风险。每股股票都代表股东对企业拥有一个基本单位的所有权。每家上市公司都会发行股票。
同一类别的每一份股票所代表的公司所有权是相等的。每个股东所拥有的公司所有权份额的大小,取决于其持有的股票数量占公司总股本的比重。
股票是股份公司资本的构成部分,可以转让、买卖,是资本市场的主要长期信用工具,但不能要求公司返还其出资。
股票是股份制企业(上市和非上市)所有者(即股东)拥有公司资产和权益的凭证。上市的股票称流通股,可在股票交易所(即二级市场)自由买卖。非上市的股票没有进入股票交易所,因此不能自由买卖,称非上市流通股。
这种所有权为一种综合权利,如参加股东大会、投票标准、参与公司的重大决策、收取股息或分享红利等,但也要共同承担公司运作错误所带来的风险。
股票是一种有价证券,是股份公司在筹集资本时向出资人发行的股份凭证,代表着其持有者(即股东)对股份公司的所有权。股票是股份证书的简称,是股份公司为筹集资金而发行给股东作为持股凭证并借以取得股息和红利的一种有价证券。每股股票都代表股东对企业拥有一个基本单位的所有权。股票是股份公司资本的构成部分,可以转让、买卖或作价抵押,是资金市场的主要长期信用工具。
8. 怎样用 Python 写一个股票自动交易的程序
方法一
前期的数据抓取和分析可能python都写好了,所以差这交易指令接口最后一步。对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。
方法二
是wind这样的软件也有直接的接口,支持部分券商,但也贵,几万一年是要的。
方法三
鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。
方法四
就是找到这些软件的关于交易指令的底层代码并更改,不过T+1的规则下,预测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧
9. 怎么学习python量化交易
下面教你八步写个量化交易策略——单股票均线策略
1 确定策略内容与框架
若昨日收盘价高出过去20日平均价今天开盘买入股票
若昨日收盘价低于过去20日平均价今天开盘卖出股票
只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?
想想人是怎么操作的,应该包括这样两个部分
既然是单股票策略,事先决定好交易哪一个股票。
每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去。
对应代码也是这两个部分
definitialize(context):
用来写最开始要做什么的地方
defhandle_data(context,data):
用来写每天循环要做什么的地方
2 初始化
我们要写设置要交易的股票的代码,比如 兔宝宝(002043)
definitialize(context):
g.security='002043.XSHE'#存入兔宝宝的股票代码
3 获取收盘价与均价
首先,获取昨日股票的收盘价
#用法:变量=data[股票代码].close
last_price=data[g.security].close#取得最近日收盘价,命名为last_price
然后,获取近二十日股票收盘价的平均价
#用法:变量=data[股票代码].mavg(天数,‘close’)
#获取近二十日股票收盘价的平均价,命名为average_price
average_price=data[g.security].mavg(20,'close')
4 判断是否买卖
数据都获取完,该做买卖判断了
#如果昨日收盘价高出二十日平均价,则买入,否则卖出
iflast_price>average_price:
买入
eliflast_price<average_price:
卖出
问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。
#用法:变量=context.portfolio.cash
cash=context.portfolio.cash#取得当前的现金量,命名为cash
5 买入卖出
#用法:order_value(要买入股票股票的股票代码,要多少钱去买)
order_value(g.security,cash)#用当前所有资金买入股票
#用法:order_target(要买卖股票的股票代码,目标持仓金额)
order_target(g.security,0)#将股票仓位调整到0,即全卖出
6 策略代码写完,进行回测
把买入卖出的代码写好,策略就写完了,如下
definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔宝宝
defhandle_data(context,data):#每日循环
last_price=data[g.security].close#取得最近日收盘价
#取得过去二十天的平均价格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得当前的现金
#如果昨日收盘价高出二十日平均价,则买入,否则卖出。
iflast_price>average_price:
order_value(g.security,cash)#用当前所有资金买入股票
eliflast_price<average_price:
order_target(g.security,0)#将股票仓位调整到0,即全卖出
现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。
7 建立模拟交易,使策略和行情实时连接自动运行
策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。 写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。
8 开启微信通知,接收交易信号
点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。 点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。
10. 怎样用 Python 写一个股票自动交易的程序
一个程序怎么可能3言两语说得完,你可以去github看看吧,很多开源的