当前位置:首页 » 交易平台 » 用python写股票策略平台
扩展阅读
佛慈制药去年股票行情 2025-01-13 15:44:16
股票软件里的白横杠 2025-01-13 15:40:17

用python写股票策略平台

发布时间: 2023-09-07 10:03:47

Ⅰ python的量化代码怎么用到股市中

2010 ~ 2017 沪深A股各行业量化分析

在开始各行业的量化分析之前,我们需要先弄清楚两个问题:

  • 第一,A股市场上都有哪些行业;

  • 第二,各行业自2010年以来的营收、净利润增速表现如何?

  • 第一个问题
    很好回答,我们使用JQData提供的获取行业成分股的方法,输入get_instries(name='sw_l1')
    得到申万一级行业分类结果如下:它们分别是:【农林牧渔、采掘、化工、钢铁、有色金属、电子、家用电器、食品饮料、纺织服装、轻工制造、医药生物、公用事业、交通运输、房地产、商业贸易、休闲服务、综合、建筑材料、建筑装饰、电器设备、国防军工、计算机、传媒、通信、银行、非银金融、汽车、机械设备】共计28个行业。

    第二个问题
    要知道各行业自2010年以来的营收、净利润增速表现,我们首先需要知道各行业在各个年度都有哪些成分股,然后加总该行业在该年度各成分股的总营收和净利润,就能得到整个行业在该年度的总营收和总利润了。这部分数据JQData也为我们提供了方便的接口:通过调用get_instry_stocks(instry_code=‘行业编码’, date=‘统计日期’),获取申万一级行业指定日期下的行业成分股列表,然后再调用查询财务的数据接口:get_fundamentals(query_object=‘query_object’, statDate=year)来获取各个成分股在对应年度的总营收和净利润,最后通过加总得到整个行业的总营收和总利润。这里为了避免非经常性损益的影响,我们对净利润指标最终选取的扣除非经常性损益的净利润数据。

    我们已经获取到想要的行业数据了。接下来,我们需要进一步分析,这些行业都有什么样的增长特征。

    我们发现,在28个申万一级行业中,有18个行业自2010年以来在总营收方面保持了持续稳定的增长。它们分别是:【农林牧渔,电子,食品饮料,纺织服装,轻工制造,医药生物,公用事业,交通运输,房地产,休闲服务,建筑装饰,电气设备,国防军工,计算机,传媒,通信,银行,汽车】;其他行业在该时间范围内出现了不同程度的负增长。

    那么,自2010年以来净利润保持持续增长的行业又会是哪些呢?结果是只有5个行业保持了基业长青,他们分别是医药生物,建筑装饰,电气设备,银行和汽车。(注:由于申万行业在2014年发生过一次大的调整,建筑装饰,电气设备,银行和汽车实际从2014年才开始统计。)

    从上面的分析结果可以看到,真正能够保持持续稳定增长的行业并不多,如果以扣非净利润为标准,那么只有医药生物,建筑装饰,电气设备,银行和汽车这五个行业可以称之为优质行业,实际投资中,就可以只从这几个行业中去投资。这样做的目的是,一方面,能够从行业大格局层面避免行业下行的风险,绕开一个可能出现负增长的的行业,从而降低投资的风险;另一方面,也大大缩短了我们的投资范围,让投资者能够专注于从真正好的行业去挑选公司进行投资。

「2010-2017」投资于优质行业龙头的收益表现

选好行业之后,下面进入选公司环节。我们知道,即便是一个好的行业也仍然存在表现不好的公司,那么什么是好的公司呢,本文试图从营业收入规模和利润规模和来考察以上五个基业长青的行业,从它们中去筛选公司作为投资标的。

3.1按营业收入规模构建的行业龙头投资组合

首先,我们按照营业收入规模,筛选出以上5个行业【医药生物,建筑装饰,电气设备,银行和汽车】从2010年至今的行业龙头如下表所示:

结论

通过以上行业分析和投资组合的历史回测可以看到:

  • 先选行业,再选公司,即使是从2015年股灾期间开始投资,至2018年5月1号,仍然能够获得相对理想的收益,可以说,红杉资本的赛道投资法则对于一般投资者还是比较靠谱的。

  • 在构建行业龙头投资组合时,净利润指标显著优于营业收入指标,获得的投资收益能够更大的跑赢全市场收益率

  • 市场是不断波动的,如果一个投资者从股灾期间开始投资,那么即使他买入了上述优质行业的龙头组合,在近3年也只能获得12%左右的累计收益;而如果从2016年5月3日开始投资,那么至2018年5月2日,2年时间就能获得超过50%以上的收益了。所以,在投资过程中选择时机也非常重要。

出自:JoinQuant 聚宽数据 JQData

Ⅱ 怎样用 Python 写一个股票自动交易的程序

网址都没有给出怎么测试呢? 这个应该是服务器生成的token吧,可以urllib2抓一下,如果抓不到的话那么他可能用的js动态加载,这个得分析js源码了,如果他用了flash来算出这个值的(我记得酷狗就是这么做的),那么恭喜你,不能算出这个值了

Ⅲ 怎样用 Python 写一个股票自动交易的程序

股票自动交易助手提供了一个 Python 自动下单接口,参考代码

#股票自动交易助手Python自动下单使用例子
#把此脚本和StockOrderApi.pyOrder.dll放到你自己编写的脚本同一目录

fromStockOrderApiimport*

#买入测试
#Buy(u"600000",100,0,1,0)

#卖出测试,是持仓股才会有动作
#Sell(u"000100",100,0,1,0)

#账户信息
print("股票自动交易接口测试")
print("账户信息")
print("--------------------------------")

arrAccountInfo=["总资产","可用资金","持仓总市值","总盈利金额","持仓数量"];
foriinrange(0,len(arrAccountInfo)):
value=GetAccountInfo(u"",i,0)
print("%s%f"%(arrAccountInfo[i],value))

print("--------------------------------")
print("")

print("股票持仓")
print("--------------------------------")
#取出所有的持仓股票代码,结果以','隔开的
allStockCode=GetAllPositionCode(0)
allStockCodeArray=allStockCode.split(',')
foriinrange(0,len(allStockCodeArray)):
vol=GetPosInfo(allStockCodeArray[i],0,0)
changeP=GetPosInfo(allStockCodeArray[i],4,0)
print("%s%d%.2f%%"%(allStockCodeArray[i],vol,changeP))

print("--------------------------------")

Ⅳ 怎样用Python写一个股票自动交易的程序

方法一前期的数据抓取和分析可能python都写好了庆察,所以差这交易指令接口最后一步。

对于股票的散户,正规的法子是华宝,国信,兴业这样愿意给接口的券商,但貌似开户费很高才给这权利,而且只有lts,ctp这样的c++接口,没python版就需要你自己封装。方法二是wind这样的软件也有直镇拦接的接口,支持部分券商,但也贵,几万一年是要的。方法三鼠标键盘模拟法,很复杂的,就是模拟键盘鼠标去操作一些软件,比如券商版交易软件和大智慧之类的。方法四就是找到这些软件的关于交易指令的底层代码并更改,不过T+1的规则下,预誉旅茄测准确率的重要性高于交易的及时性,花功夫做数据分析就好,交易就人工完成吧

Ⅳ 想编写股票自动交易软件,学什么语言好

Python 作为自动化交易的入门编程的计算机语言还不错。也可参考现有的云交易(或自动炒股交易)软件,毕竟已投入使用的产品相对来说会更成熟和稳定。

Ⅵ 用Python中的蒙特卡洛模拟两支股票组成的投资组合的价格趋势分析

蒙特卡洛模拟是一种模拟把真实系统中的概率过程用岁虚计算机程序来模拟的方法。对于投资组合的价格趋势分析,可以使用Python中的蒙特卡洛模拟。首册茄先,回顾投资组合的价格趋势。投资组合中的股票价格的趋势是受多种因素影响的,可分为经济、政治和技术因素,其中经济因素最重要。因此,蒙特卡洛模拟可以模拟这些因素对投资组合价格趋势的影响,并通过计算机绘制投资组合价格趋势的曲线。
Python中的蒙特卡洛模拟首先需要计算投资组合中各股票价格的每一期的收益率,其次,计算出投资组合的收益率;随后,计算预测投资组合的期权价格,并将所有的期权价格叠加起来,从而绘制投资组合的价格曲线。最后,在投资组合的价格曲线的基础上,可以分析投资组合在不同时期的价格走州雀察势,并进行投资组合结构的调整,从而获得最优投资组合。

Ⅶ 怎样用python处理股票

用Python处理股票需要获取股票数据,以国内股票数据为例,可以安装Python的第三方库:tushare;一个国内股票数据获取包。可以在网络中搜索“Python tushare”来查询相关资料,或者在tushare的官网上查询说明文档。

Ⅷ 使用python做量化交易策略测试和回验,有哪些比较成熟一些的库

可以尝试一下JoinQuant: 聚宽,人人皆为宽客
详细的API文档:API文档 - JoinQuant

免费提供IPython Notebook研究平台,提供分钟级数据,采用Docker技术隔离,资源独立、安全性更高、性能更好,同步支持Python2、Python3。
免费提供沪深A股、ETF的历史交易数据,支持基于日级、分钟级的精准回测。
免费提供最准确、实时的沪深A股、ETF模拟交易工具,支持基于tick级的模拟交易。
为量化爱好者提供线上交流社区,支持一键克隆策略,便于用户交流量化策略、学习量化知识,一起成长。
基于2005年至今完整的Level-2数据,上市公司财务数据,包含完整的停复牌、复权、退市等信息,盘后及时更新。

Ⅸ 怎么学习python量化交易

下面教你八步写个量化交易策略——单股票均线策略

1 确定策略内容与框架

若昨日收盘价高出过去20日平均价今天开盘买入股票
若昨日收盘价低于过去20日平均价今天开盘卖出股票

只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?

想想人是怎么操作的,应该包括这样两个部分

既然是单股票策略,事先决定好交易哪一个股票。

每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去。

对应代码也是这两个部分

definitialize(context):
用来写最开始要做什么的地方
defhandle_data(context,data):
用来写每天循环要做什么的地方

2 初始化

我们要写设置要交易的股票的代码,比如 兔宝宝(002043)

definitialize(context):
g.security='002043.XSHE'#存入兔宝宝的股票代码

3 获取收盘价与均价

首先,获取昨日股票的收盘价

#用法:变量=data[股票代码].close
last_price=data[g.security].close#取得最近日收盘价,命名为last_price

然后,获取近二十日股票收盘价的平均价

#用法:变量=data[股票代码].mavg(天数,‘close’)
#获取近二十日股票收盘价的平均价,命名为average_price
average_price=data[g.security].mavg(20,'close')

4 判断是否买卖

数据都获取完,该做买卖判断了

#如果昨日收盘价高出二十日平均价,则买入,否则卖出
iflast_price>average_price:
买入
eliflast_price<average_price:
卖出

问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。

#用法:变量=context.portfolio.cash
cash=context.portfolio.cash#取得当前的现金量,命名为cash

5 买入卖出

#用法:order_value(要买入股票股票的股票代码,要多少钱去买)
order_value(g.security,cash)#用当前所有资金买入股票
#用法:order_target(要买卖股票的股票代码,目标持仓金额)
order_target(g.security,0)#将股票仓位调整到0,即全卖出

6 策略代码写完,进行回测

把买入卖出的代码写好,策略就写完了,如下

definitialize(context):#初始化
g.security='002043.XSHE'#股票名:兔宝宝
defhandle_data(context,data):#每日循环
last_price=data[g.security].close#取得最近日收盘价
#取得过去二十天的平均价格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得当前的现金
#如果昨日收盘价高出二十日平均价,则买入,否则卖出。
iflast_price>average_price:
order_value(g.security,cash)#用当前所有资金买入股票
eliflast_price<average_price:
order_target(g.security,0)#将股票仓位调整到0,即全卖出

现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。

7 建立模拟交易,使策略和行情实时连接自动运行

策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。 写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。

8 开启微信通知,接收交易信号

点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。 点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。

Ⅹ python量化哪个平台可以回测模拟实盘还不要钱

Python量化投资框架:回测+模拟+实盘
Python量化投资 模拟交易 平台 1. 股票量化投资框架体系 1.1 回测 实盘交易前,必须对量化交易策略进行回测和模拟,以确定策略是否有效,并进行改进和优化。作为一般人而言,你能想到的,一般都有人做过了。回测框架也如此。当前小白看到的主要有如下五个回测框架: Zipline :事件驱动框架,国外很流行。缺陷是不适合国内市场。 PyAlgoTrade : 事件驱动框架,最新更新日期为16年8月17号。支持国内市场,应用python 2.7开发,最大的bug在于不支持3.5的版本,以及不支持强大的pandas。 pybacktest :以处理向量数据的方式进行回测,最新更新日期为2个月前,更新不稳定。 TradingWithPython:基于pybacktest,进行重构。参考资料较少。 ultra-finance:在github的项目两年前就停止更新了,最新的项目在谷歌平台,无奈打不开网址,感兴趣的话,请自行查看吧。 RQAlpha:事件驱动框架,适合A股市场,自带日线数据。是米筐的回测开源框架,相对而言,个人更喜欢这个平台。 2 模拟 模拟交易,同样是实盘交易前的重要一步。以防止类似于当前某券商的事件,半小时之内亏损上亿,对整个股市都产生了恶劣影响。模拟交易,重点考虑的是程序的交易逻辑是否可靠无误,数据传输的各种情况是否都考虑到。 当下,个人看到的,喜欢用的开源平台是雪球模拟交易,其次是wind提供的模拟交易接口。像优矿、米筐和聚宽提供的,由于只能在线上平台测试,不甚自由,并无太多感觉。 雪球模拟交易:在后续实盘交易模块,再进行重点介绍,主要应用的是一个开源的easytrader系列。 Wind模拟交易:若没有机构版的话,可以考虑应用学生免费版。具体模拟交易接口可参看如下链接:http://www.dajiangzhang.com/document 3 实盘 实盘,无疑是我们的终极目标。股票程序化交易,已经被限制。但对于万能的我们而言,总有解决的办法。当下最多的是破解券商网页版的交易接口,或者说应用爬虫爬去操作。对我而言,比较倾向于食灯鬼的easytrader系列的开源平台。对于机构用户而言,由于资金量较大,出于安全性和可靠性的考虑,并不建议应用。 easytrader系列当前主要有三个组成部分: easytrader:提供券商华泰/佣金宝/银河/广发/雪球的基金、股票自动程序化交易,量化交易组件 easyquotation : 实时获取新浪 / Leverfun 的免费股票以及 level2 十档行情 / 集思路的分级基金行情 easyhistory : 用于获取维护股票的历史数据 easyquant : 股票量化框架,支持行情获取以及交易 2. 期货量化投资框架体系 一直待在私募或者券商,做的是股票相关的内容,对期货这块不甚熟悉。就根据自己所了解的,简单总结一下。 2.1 回测 回测,貌似并没有非常流行的开源框架。可能的原因有二:期货相对股票而言,门槛较高,更多是机构交易,开源较少; 去年至今对期货监管控制比较严,至今未放开,只能做些CTA的策略,另许多人兴致泱泱吧。 就个人理解而言,可能wind的是一个相对合适的选择。 2.2 模拟 + 实盘 vn.py是国内最为流行的一个开源平台。起源于国内私募的自主交易系统,2015年初启动时只是单纯的交易API接口的Python封装。随着业内关注度的上升和社区不断的贡献,目前已经一步步成长为一套全面的交易程序开发框架。如官网所说,该框架侧重的是交易模块,回测模块并未支持。 能力有限,如果对相关框架感兴趣的话,就详看相关的链接吧。个人期望的是以RQAlpha为主搭建回测框架,以雪球或wind为主搭建模拟框架,用easy系列进行交易。