当前位置:首页 » 股市行情 » 基于bp和som神经网络的股票价格预测的研究
扩展阅读
股票停盘开盘价格 2025-03-10 16:23:47
湖南有什么好股票代码 2025-03-10 16:11:38
德州公司股票股利是 2025-03-10 16:11:25

基于bp和som神经网络的股票价格预测的研究

发布时间: 2025-01-28 02:34:09

Ⅰ 基于改进莱维飞行和混沌映射的粒子群优化BP神经网络预测研究(Matlab代码实现)

欢迎来到本博客❤️❤️ 博主优势: 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 /> ⛳️座右铭:行百里者,半于九十。

基于改进莱维飞行和混沌映射的粒子群优化BP神经网络预测研究是一种将粒子群优化算法(PSO)与BP神经网络相结合的预测研究方法。该方法通过改进莱维飞行和混沌映射的方式,提高了PSO算法的搜索能力和收敛速度,进而提高了BP神经网络的预测准确性。

具体而言,该方法首先使用莱维飞行算法来更新粒子的速度和位置,以实现全局搜索。莱维飞行算法是一种模拟莱维飞行的随机搜索算法,具有较好的全局搜索能力。然后,通过引入混沌映射来调整粒子的速度和位置,以实现局部搜索。混沌映射是一种非线性动力学系统,具有较好的局部搜索能力。通过融合莱维飞行和混沌映射,该方法能够在全局和局部范围内进行有效的搜索和优化。

在PSO算法的基础上,该方法还结合了BP神经网络进行预测任务。BP神经网络是一种常用的预测算法,具有较好的学习和泛化能力。通过将PSO算法与BP神经网络相结合,该方法能够利用PSO算法的优化能力来自动调整BP神经网络的权值和阈值,从而提高预测准确性。

通过实验证明,基于改进莱维飞行和混沌映射的粒子群优化BP神经网络预测研究方法在预测任务中具有较好的性能。该方法能够有效地搜索和优化BP神经网络的参数,提高预测准确性,并且具有较好的收敛速度和稳定性。因此,该方法在实际应用中具有一定的研究和应用价值。

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]龚然,施文娟,朱振源.基于混沌映射和莱维飞行的黏菌优化算法[J].计算机与数字工程, 2023, 51(2):361-367.

[2]梅建想,李晓理,张山.基于改进粒子群BP神经网络的PM_(2.5)浓度预测研究[C]//第28届中国过程控制会议(CPCC 2017)暨纪念中国过程控制会议30周年.0[2023-08-27].

[3]黄丽君,郭文忠.基于粒子群优化的BP神经网络预测方法及其应用研究[J].漳州师范学院学报(自然科学版), 2008.DOI:JournalArticle/5aeb89d2c095d709440a8308.

Ⅱ 什么是BP神经网络

误差反向传播(Error Back Propagation, BP)算法
1、BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。
2、BP算法实现步骤(软件):
1)初始化
2)输入训练样本对,计算各层输出
3)计算网络输出误差
4)计算各层误差信号
5)调整各层权值
6)检查网络总误差是否达到精度要求
满足,则训练结束;不满足,则返回步骤2)
3、多层感知器(基于BP算法)的主要能力:
1)非线性映射:足够多样本->学习训练
能学习和存储大量输入-输出模式映射关系。只要能提供足够多的样本模式对供BP网络进行学习训练,它便能完成由n维输入空间到m维输出空间的非线性映射。
2)泛化:输入新样本(训练时未有)->完成正确的输入、输出映射
3)容错:个别样本误差不能左右对权矩阵的调整
4、标准BP算法的缺陷:
1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;
2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);
3)隐节点的选取缺乏理论支持;
4)训练时学习新样本有遗忘旧样本趋势。
注3:改进算法—增加动量项、自适应调整学习速率(这个似乎不错)及引入陡度因子