⑴ 股票价格的计算公式
股价是指股票的交易价格,是一个动态的数值,由市场买卖方成交决定,受供求关系的影响上下波动。
⑵ 无穷递缩等比数列公式如何推导出股票固定增长模型的价值公式
书本上是这样写:
假设如果股利以一个固定的比率增长,那么我们就已经把预测无限期未来股利的问题,转化为单一增长率的问题。如果D0是刚刚派发的股利,g是稳定增长率,那么股价可以写成:
P0=D1/(1+R)+ D2/(1+R)^2 + D3/(1+R)^3 + ……
=D0(1+g)/(1+R) + D0(1+ g)^2/(1+R)^2 + D0(1+ g)^3/(1+R)^3……
只要增长率g<R,这一系列现金流现值就是:
P0=D0(1+g)/ (R-g )=D1/(R-g)
我个人的数学推导:
首先P0=D1/(1+R)+ D2/(1+R)^2 + D3/(1+R)^3 + ……(增长率g<R)
就能把上面的公式看成是等比数列求和
A1=D0(1+g)/(1+R) Q=(1+g)/ (1+R)
当 g<R 时,可以推出Q<1
就能利用无穷递减等比数列求和公式:SN=A1/(1-Q)
那么:P0=SN=D1/(1+R)+ D2/(1+R)^2 + D3/(1+R)^3 + ……(增长率g<R)
= D0(1+g)/(1+R) + D0(1+ g)^2/(1+R)^2 + D0(1+ g)^3/(1+R)^3……
=D0(1+g)/(1+R) /(1-Q)
=D0(1+g)/(1+R) /(1-(1+g)/ (1+R))
=D0(1+g)/R-g
最终结果:P0= D0(1+g)/ (R-g ) = D1/(R-g)
⑶ 股票价格计算公式详细计算方式!
股票价格=预期股息/存款利率,
这个公式可运用等效银行存款解释,例如现行一年期存款利率是3.50%,某只股票每年固定的股息为每股0.35元,那么10元的银行存款和1股10元的股票在收益上是等效的,因此1股的价格应该理论价值为10元(=0.35÷3.5%)。
股价20元,对应3%的银行利率,预期股息提高25%至3.75%(0.75元),0.75/3.25%=23.08元。
⑷ 根据货币的时间价值,推导出股票价格的基本公式 i P D 。
其实就是股利折现模型。
模型有三个假定条件:
1.股息的支付在时间上是永久性的,即t趋向于无穷大(t→∞);
2.股息的增长速度是一个常数,即gt等于常数(gt = g);
3.模型中的贴现率大于股息增长率,即y 大于g (y>g)。
模型的计算公式为:V=D0(1+g)/(y-g)=D1/(y-g),其中的D0、D1分别是初期和第一期支付的股息。公司的增长机会源于减少当前的股利,并用于再投资,这些投资机会的净现值提升了公司的价值,这一净现值称为增长机会的现值(PVGO)。对于具有增长机会的公司来说,股价等于无增长每股值加上增长机会的现值。 PVGO=当前每股价格-零增长时的每股价格。
⑸ 股票价值计算公式详细计算方法
计算公式为:
股票价值
(5)股票价格零增长型公式推导扩展阅读:
确定股票内在价值一般有三种方法:
一、盈率法,市盈率法是股票市场中确定股票内在价值的最普通、最普遍的方法,通常情况下,股市中平均市盈率是由一年期的银行存款利率所确定的。
二、方法资产评估值法,就是把上市公司的全部资产进行评估一遍,扣除公司的全部负债,然后除以总股本,得出的每股股票价值。如果该股的市场价格小于这个价值,该股票价值被低估,如果该股的市场价格大于这个价值,该股票的价格被高估。
三、销售收入法,就是用上市公司的年销售收入除以上市公司的股票总市值,如果大于1,该股票价值被低估,如果小于1,该股票的价格被高估。
⑹ 股票估价中的H模型是如何推导的
Value = D0(1 + gt)/(r – gt) + D0*H(gs – gt)/(r – gt)
这个应该是你提到的H模型吧?它假设一个公司的高增长率gs,通过一段时间例如10年,慢慢降低到其长期增长率gt,H为一半的下降时间,如例为5(H=10/2).如需详尽资料,建议到书店或图书馆查询。
⑺ 计算股票价值的公式
内在价值V=股利/(R-G)其中股利是当前股息;R为资本成本=8%,当然还有些书籍显示,R为合理的贴现率;G是股利增长率。本年价值为:2.5/(10%-5%),下一年为2.5*(1+10%)/(10%-5%)=55。大部分的收益都以股利形式支付给股东,股东在从股价上获得很大收益的情况下使用。根据本人理解应该属于高配息率的大笨象公司,而不是成长型公司。因为成长型公司要求公司不断成长,所以多数不配发股息或者极度少的股息,而是把钱再投入公司进行再投资,而不是以股息发送。
本条内容来源于:中国法律出版社《中华人民共和国金融法典:应用版》
⑻ 股票估价中的股利固定增长模型数学推导问题
可以用两种解释来解答你的问题:第一种是结合实际的情况来解释,在解释过程中只针对最后的结论所得的式子P0=D0(1+g)/(R-g)=D1/(R-g)来进行讨论,但理论依据上会有点牵强;第二种是从式子的推导过程来进行相关的论述,结合相关数学理论来解释,最后解释的结果表明g>R时,P0取值应为正无穷且结果推导。
第一种解释如下:
这个数学推导模型中若出现g>=R的情况在现实中基本不会出现的。要理解这两个数值在式子中成立时必有g<R恒久关系要结合现实进行理解。
若股利以一个固定的比率增长g,市场要求的收益率是R,当R大于g且相当接近于g的时候,也就是数学理论上的极值为接近于g的数值,那么上述的式子所计算出来的数值会为正无穷,这样的情况不会在现实出现的,由于R这一个是市场的预期收益率,当g每年能取得这样的股息时,R由于上述的式子的关系导致现实中R不能太接近于g,所以导致市场的预期收益率R大于g时且也不会太接近g才切合实际。
根据上述的分析就不难理解g>=R在上述式子中是不成立的,由于g=R是一个式子中有意义与无意义的数学临界点。
第二种解释如下:
从基本式子进行推导的过程为:
P0=D1/(1+R)+
D2/(1+R)^2+D3/(1+R)^3
+
……
=D0(1+g)/(1+R)+D0(1+g)^2/(1+R)^2+D0(1+g)^3/(1+R)^3……
=[D0(1+g)/(1+R)]*[1+(1+g)/(1+R)+(1+g)^2/(1+R)^2+(1+g)^3/(1+R)^3+……]
这一步实际上是提取公因式,应该不难理解,现在你也可以用g>=R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现(1+g)/(1+R)>=1,这样就会导致整个式子计算出来的数值会出现一个正无穷;用g<R时代入这个上述式子共扼部分(1+g)/(1+R)式子你就会发现0<(1+g)/(1+R)<1,这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)](注:N依题意是正无穷的整数)
这一步实际上是上一步的一个数学简化,现在的关键是要注意式子的后半部分。若g=R,则(1+g)/(1+R)=1,导致1-(1+g)/(1+R)这个式子即分母为零,即无意义,从上一步来看,原式的最终值并不是无意义的,故此到这一步为止g=R不适合这式子的使用;若g>R,仍然有(1+g)/(1+R)>1,故此[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]>0,把这个结果代入原式中还是正无穷;g<R这个暂不继续进行讨论,现在继续进行式子的进一步推导。
=[D0(1+g)/(1+R)]*[1-(1+g)/(1+R)]
这一步是十分关键的一步,是这样推导出来的,若g<R,得0<(1+g)/(1+R)<1,得(1+g)^N/(1+R)^N其极值为零,即1-(1+g)^N/(1+R)^N极值为1,即上一步中的分子1-(1+g)^N/(1+R)^N为1;若g>R是无法推导这一步出来的,原因是(1+g)/(1+R)>1,导致(1+g)^N/(1+R)^N仍然是正无穷,即1-(1+g)^N/(1+R)^N极值为负无穷,导致这个式子无法化简到这一步来,此外虽然无法简化到这一步,但上一步中的式子的后半部分,当g>R时,仍然有[1-(1+g)^N/(1+R)^N]/[1-(1+g)/(1+R)]这一个式子为正无穷,注意这个式子中的分子部分为负无穷,分母部分也为负值,导致这个式子仍为正无穷。
P0=D0(1+g)/(R-g)=D1/(R-g)
(注:从上一步到这里为止只是一个数学上的一个简单简化过程,这里不作讨论)
经过上述的分析你就会明白为什么书中会说只要增长率g<R,这一系列现金流现值就是:P0=D0(1+g)/(R-g)=D1/(R-g)。如果增长率g>R时,原式所计算出来的数值并不会为负,只会取值是一个正无穷,且g=R时,原式所计算出来的数值也是一个正无穷。
⑼ 股票的投资价值中有一个计算股价的公式,希望懂的帮我解释一下,或者用数学知识证明等式成立
做股票我从不进行价值投资,在中国价值投资就是扯淡,本人只做技术分析,不明白你的公式的意思,但能给你上式的证明过程,这题最简单,应用初中等比数列前N项和公式即可,
设a1a2a3为等比数列,公比为q,则前N项和Sn=[a1*(1-q^n)]/(1-q)
不需要高等数学和数学分析的知识,下面是证明过程:
⑽ 如何理解股利贴现模型以及其计算公式
股利贴现模型,简称DDM,是一种最基本的股票内在价值评价模型,股票内在价值可以用股票每年股利收入的现值之和来评价;股利是发行股票的股份公司给予股东的回报,按股东的持股比例进行利润分配,每一股股票所分得的利润就是每股股票的股利。
股利贴现模型为定量分析虚拟资本、资产和公司价值奠定了理论基础,也为证券投资的基本分析提供了强有力的理论根据。
股利贴现模型计算公式分为三种。零增长模型即股利增长率为0,计算公式V=D0/k,V为公司价值,D0为当期股利,K为投资者要求的投资回报率,或资本成本;不变增长模型,即股利按照固定的增长率g增长,计算公式为V=D1/(k-g);二段增长模型、三段增长模型、及多段增长模型。
(10)股票价格零增长型公式推导扩展阅读:
股利是股东投资股票获得的唯一现金流,因此现金股利是决定股票价值的主要因素,而盈利等其他因素对股票价值的影响,只能通过股利间接地表现出来。现金股利贴现模型适合于分红多且稳定的公司,一般为非周期性行业。
由于该模型使用的是预期现金股利的贴现价值,因此对于分红很少或者股利不稳定的公司、周期性行业均不适用。股利贴现模型在实际应用中存在的问题有许多公司不支付现金股利,股利贴现模型的应用受到限制;股利支付受公司股利政策的人为因素影响较大;相对于公司收益长期明显滞后。