『壹』 garch 初始值 波动率
garch初始值波动率:以哈飞股份(600038)为例,运用GARCH(1,1)模型计算股票市场价值的波动率。
ABDL提出了VAR—RV模型,即所谓的长记忆高斯向量自回归对数实际波动率模型,并且用第T日的实际波动率分别和VAR—RV及GARCH(1,1)利用直到T一1日的信息预测第T日的波动率的结果比较,发现VAR—RV的预测精度远优于GARCH(1,1)的预测精度。
影响:
在计算期权的理论价格时,通常采用标的资产的历史波动率:波动率越大,期权的理论价格越高;反之波动率越小,期权的理论价格越低。波动率对期权价格的正向影响,可以理解为:对于期权的买方,由于买入期权付出的成本已经确定。
标的资产的波动率越大,标的资产价格偏离执行价格的可能性就越大,可能获得的收益就越大,因而买方愿意付出更多的权利金购买期权;对于期权的卖方,由于标的资产的波动率越大,其承担的价格风险就越大,因此需要收取更高的权利金。
『贰』 GARCH模型测股票波动性需要什么数据
你只需下载股票每日历史价位就可以了。比方说你下载的是每日开盘价(用每日均价也是可以的),记为S1,S2, S3。。。然后,你需要把这些数字转换成价格日变化率,即(S2-S1)/S1, (S3-S2)/S2,...等等,然后把这组变化率数据导入Eviews, 按下面链接页面的步骤操作就可以,很容易的。
http://perso.fundp.ac.be/~mpetijea/MyEviews/Clips/clip17.html
加油。
『叁』 如何用GARCH(1,1)求股票的具体波动率数据
以哈飞股份(600038)为例,运用GARCH(1,1)模型计算股票市场价值的波动率。
GARCH(1,1)模型为:
(1)
(2)
其中, 为回报系数, 为滞后系数, 和 均大于或等于0。
(1)式给出的均值方程是一个带有误差项的外生变量的函数。由于是以前面信息为基础的一期向前预测方差,所以称为条件均值方程。
(2)式给出的方程中: 为常数项, (ARCH项)为用均值方程的残差平方的滞后项, (GARCH项)为上一期的预测方差。此方程又称条件方差方程,说明时间序列条件方差的变化特征。
通过以下六步进行求解:
本文选取哈飞股份2009年全年的股票日收盘价,采用Eviews 6.0的GARCH工具预测股票收益率波动率。具体计算过程如下:
第一步:计算日对数收益率并对样本的日收益率进行基本统计分析,结果如图1和图2。
日收益率采用JP摩根集团的对数收益率概念,计算如下:
其中Si,Si-1分别为第i日和第i-1日股票收盘价。
图1 日收益率的JB统计图
对图1日收益率的JB统计图进行分析可知:
(1)标准正态分布的K值为3,而该股票的收益率曲线表现出微量峰度(Kurtosis=3.748926>3),分布的凸起程度大于正态分布,说明存在着较为明显的“尖峰厚尾”形态;
(2)偏度值与0有一定的差别,序列分布有长的左拖尾,拒绝均值为零的原假设,不属于正态分布的特征;
(3)该股票的收益率的JB统计量大于5%的显著性水平上的临界值5.99,所以可以拒绝其收益分布正态的假设,并初步认定其收益分布呈现“厚尾”特征。
以上分析证明,该股票收益率呈现出非正态的“尖峰厚尾”分布特征,因此利用GARCH模型来对波动率进行拟合具有合理性。
第二步:检验收益序列平稳性
在进行时间序列分析之前,必须先确定其平稳性。从图2日收益序列的路径图来看,有比较明显的大的波动,可以大致判断该序列是一个非平稳时间序列。这还需要严格的统计检验方法来验证,目前流行也是最为普遍应用的检验方法是单位根检验,鉴于ADF有更好的性能,故本文采用ADF方法检验序列的平稳性。
从表1可以看出,检验t统计量的绝对值均大于1%、5%和10%标准下的临界值的绝对值,因此,序列在1%的显著水平下拒绝原假设,不存在单位根,是平稳序列,所以利用GARCH(1,1)模型进行检验是有效的。
图2 日收益序列图
表1ADF单位根检验结果
第三步:检验收益序列相关性
收益序列的自相关函数ACF和偏自相关函数PACF以及Ljung-Box-Pierce Q检验的结果如表3(滞后阶数 =15)。从表4.3可以看出,在大部分时滞上,日收益率序列的自相关函数和偏自相关函数值都很小,均小于0.1,表明收益率序列并不具有自相关性,因此,不需要引入自相关性的描述部分。Ljung-Box-Pierce Q检验的结果也说明日收益率序列不存在明显的序列相关性。
表2自相关检验结果
第四步:建立波动性模型
由于哈飞股份收益率序列为平稳序列,且不存在自相关,根据以上结论,建立如下日收益率方程:
(3)
(4)
第五步:对收益率残差进行ARCH检验
平稳序列的条件方差可能是常数值,此时就不必建立GARCH模型。故在建模前应对收益率的残差序列εt进行ARCH检验,考察其是否存在条件异方差,收益序列残差ARCH检验结果如表3。可以发现,在滞后10阶时,ARCH检验的伴随概率小于显著性水平0.05,拒绝原假设,残差序列存在条件异方差。在条件异方差的理论中,滞后项太多的情况下,适宜采用GARCH(1,1)模型替代ARCH模型,这也说明了使用GARCH(1,1)模型的合理性。
表3日收益率残差ARCH检验结果
第六步:估计GARCH模型参数,并检验
建立GARCH(1,1)模型,并得到参数估计和检验结果如表4。其中,RESID(-1)^2表示GARCH模型中的参数α,GARCH(-1)表示GARCH模型中的参数β,根据约束条件α+β<1,有RESID(-1)^2+GARCH(-1)=0.95083<1,满足约束条件。同时模型中的AIC和SC值比较小,可以认为该模型较好地拟合了数据。
表4日收益率波动率的GARCH(1,1)模型的参数估计
『肆』 如何用计量经济学方法对股票市场的波动进行预测和解释
股票市场的波动是影响社会经济和个人财富变动的重要因素,预测和解释股票市场波动具有重要的经济意义。计量经济学方法可以帮助我们进行股票市场波动的预测和让毕解释。下坦察芹面是一些常用的计量经济学方法:
时间序列模型
协整分析
面板数据模型
时间序列模型是一种用于预测股票市场波动的常用方法。它基于历史数据建立模型,用于预测未来的趋势。时间序列模型包括ARIMA模型、GARCH模型、VAR模型等。其中,ARIMA模型可以用于预测时间序列数据的未来趋势,GARCH模型可以用于预测股票市场波动的大小和方向,VAR模型可以用于预测多个变量之间的相互影响。
协整分析是一种用于解释股票市场波动的方法,它用于研究多个时间序列变量之间的没闷长期关系。通过协整分析,可以确定股票市场波动与其他宏观经济变量之间的关系,例如GDP、通货膨胀率、利率等。这有助于我们理解股票市场波动的根本原因,并对未来的股票市场波动进行预测。
面板数据模型是一种将时间序列数据和跨时间的横截面数据结合起来的方法,可以用于研究个体和时间之间的关系。在股票市场中,我们可以将不同的股票看作不同的个体,利用面板数据模型分析不同股票之间的关系,以及它们与其他宏观经济变量之间的关系。这可以帮助我们更好地理解股票市场波动的机制和原因,并预测未来的股票市场走势。
综上所述,计量经济学方法可以用于预测和解释股票市场波动。不同的方法可以用于不同的情境,需要根据实际情况选择合适的方法。
『伍』 如何利用计量经济学方法估计金融市场的波动率,并预测未来的股票价格走势
估计金融市场波动率的方法之一是使用GARCH模型。GARCH模型是一个非线性的时间序列模型,用来描述金融市场波动率的异方差性(volatilityclustering)。该模型可以通过历史数据来估计未来波动率的水平和方向。以下是利用GARCH模型估计波动率和预测未来股票价格走势的一般步骤:
1.收集历史股票价格数据以及与该公司相关的其他经济指标数据。这些数据可以从各种来源(比如财经新闻、股票网站等)收集。
2.进行数据清理和预处理。这涉及到处理异常值、缺失值和季节性等。
3.使用GARCH模型估计波动率。该模型可以包括ARCH(自回归条件异方差)和GARCH(广义自回归条件异方差)模型。
4.模型拟合完成后,进行模型检验。这包括残差分析和模型拟合优度的检验。
5.利用已估计出的波动率进行未来股票价格的预测。这可以通过将已估计出的波动率斗悉雀带入股票价格的确定性模型来实现。
需要注意的是,GARCH模型仅能够空早反映历史数据中的波动率,无法准确地预测未来变化,因此预测结果仅供参考。同时,由于金融市场的复杂性和不确定性,建议在进行金融决策时,需综合考虑各种因素,而不能仅仅依赖统计模型的预测陆余。
『陆』 如何用eviews进行GARCH模型测股票波动性,要具体步骤
Eviews是Econometrics Views的缩写,直译为计量经济学观察,通常称为计量经济学软件包。它的本意是对社会经济关系与经济活动的数量规律,采用计量经济学方法与技术进行“观察”。另外Eviews也是美国QMS公司研制的在Windows下专门从事数据分析、回归分析和预测的工具。使用Eviews可以迅速地从数据中寻找出统计关系,并用得到的关系去预测数据的未来值。Eviews的应用范围包括:科学实验数据分析与评估、金融分析、宏观经济预测、仿真、销售预测和成本分析等。
GARCH模型是一个专门针对金融数据所量体订做的回归模型,除去和普通回归模型相同的之处,GARCH对误差的方差进行了进一步的建模。特别适用于波动性的分析和预测,这样的分析对投资者的决策能起到非常重要的指导性作用,其意义很多时候超过了对数值本身的分析和预测。
一般的GARCH模型可以表示为:
Y(t)=h(t)^1/2*a(t) ⑴
h(t)=h(t-1)+a(t-1)^2 ⑵
其中ht为条件方差,at为独立同分布的随机变量,ht与at互相独立,at为标准正态分布。⑴式称为条件均值方程;⑵式称为条件方差方程,说明时间序列条件方差的变化特征。为了适应收益率序列经验分布的尖峰厚尾特征,也可假设 服从其他分布,如Bollerslev (1987)假设收益率服从广义t-分布,Nelson(1991)提出的EGARCH模型采用了GED分布等。另外,许多实证研究表明收益率分布不但存在尖峰厚尾特性,而且收益率残差对收益率的影响还存在非对称性。当市场受到负冲击时,股价下跌,收益率的条件方差扩大,导致股价和收益率的波动性更大;反之,股价上升时,波动性减小。股价下跌导致公司的股票价值下降,如果假设公司债务不变,则公司的财务杠杆上升,持有股票的风险提高。因此负冲击对条件方差的这种影响又被称作杠杆效应。由于GARCH模型中,正的和负的冲击对条件方差的影响是对称的,因此GARCH模型不能刻画收益率条件方差波动的非对称性。
『柒』 如何利用机器学习方法预测股票价格的波动趋势
预测股票价格的波动趋势是金融领域中的一个重要问题,机器学习方法可以对该问题进行建模和求解。以下是一些可以采用的机器学习方法:
1.时间序列分析:用于分析股票价格随时间变化的趋势性、周期性和随机性。基于ARIMA、GARCH、VAR等模型的时间序列分析方法可用于预测未来的股票价格走势。
2.支持向量机(SVM):可以处理线性和非线性数据,并在训练模型时能够自动找到最优分类春局边界。通过构建和训练SVM模型,可以预测未来股票价格的涨跌趋势。
3.人工神经网络(ANN):模拟人类仔森搭大脑神经网络的处理过程,可以自动分析和识别输入数据中的模式和趋势。通过训练ANN模型,可以预测未来股票价格的变化趋势。
4.决策树(DT):通过对数据进行分类和回归分析,可显示支持机器学习算法的决策过程。在预测股票价格波动趋势时,基于决策树的方法可以自动选择最优属性和分类子集,得到更准确的预测结果。
以上机器学习方法都有其应用场景和局限性,可念拿以根据数据特点和问题需求进行选择。同时,还需进行特征选择、数据归一化和建立评估指标等步骤,以确保预测模型的准确性和稳定性。