当前位置:首页 » 股市行情 » 股票价格服从几何布朗运动的证明
扩展阅读
2019新闻 2025-01-27 12:21:48

股票价格服从几何布朗运动的证明

发布时间: 2023-09-30 18:02:33

⑴ 布朗运动的金融数学

将布朗运动与股票价格行为联系在一起,进而建立起维纳过程的数学模型是本世纪的一项具有重要意义的金融创新,在现代金融数学中占有重要地位。迄今,普遍的观点仍认为,股票市场是随机波动的,随机波动是股票市场最根本的特性,是股票市场的常态。
布朗运动假设是现代资本市场理论的核心假设。现代资本市场理论认为证券期货价格具有随机性特征。这里的所谓随机性,是指数据的无记忆性,即过去数据不构成对未来数据的预测基础。同时不会出现惊人相似的反复。随机现象的数学定义是:在个别试验中其结果呈现出不确定性;在大量重复试验中其结果又具有统计规律性的现象。描述股价行为模型之一的布朗运动之维纳过程是马尔科夫随机过程的一种特殊形式;而马尔科夫过程是一种特殊类型的随机过程。随机过程是建立在概率空间上的概率模型,被认为是概率论的动力学,即它的研究对象是随时间演变的随机现象。所以随机行为是一种具有统计规律性的行为。股价行为模型通常用著名的维纳过程来表达。假定股票价格遵循一般化的维纳过程是很具诱惑力的,也就是说,它具有不变的期望漂移率和方差率。维纳过程说明只有变量的当前值与未来的预测有关,变量过去的历史和变量从过去到现在的演变方式则与未来的预测不相关。股价的马尔科夫性质与弱型市场有效性(the weak form of market efficiency)相一致,也就是说,一种股票的现价已经包含了所有信息,当然包括了所有过去的价格记录。但是当人们开始采用分形理论研究金融市场时,发现它的运行并不遵循布朗运动,而是服从更为一般的几何布朗运动(geometric browmrian motion)。

⑵ 证券价格服从漂移参数0.05,波动参数0.3的几何布朗运动,当前价格为95,利率是4% 假设有种

后答案上默认为这个概率等于P[ln(S(0.5)/

⑶ 风险中性的求证试验

期权定价模型
期权定价模型是期权理论分析的一个重要内容,它是金融工程研究的基础。1973年金融学家费雪·布莱克(FischerBlack)和迈伦·斯科尔斯(Myronscholes)在美国《政治经济学》上发表了论文《期权和公司债务的定价》,给出了欧式股票看涨期权的定价公式,即今天所称的Black2Scholes模型,该模型被称为“不仅在金融领域,而且在整个经济领域中最成功的理论”,斯科尔斯因此和美国哈佛商学院的教授罗伯特·默顿(BobertC.Merton)获得了第29届诺贝尔经济学奖。但Black2Scholes期权定价公式的推导过程是相当复杂的,需要用到随机过程、随机微分方程求解等高深的数学工具知识。Black2Scholes公式的两个新颖和简洁的推导,即在风险中性假设下来推导出Black2Scholes
基本假设和记号
借助于Black2Scholes模型的原始假设条件:
(1)期权是股票的欧式看涨期权,其执行价格是K,记当前时刻为t,期权到期时间为T,股票当前价格是S,时刻的价格是ST。
(2)股票价格遵循几何布朗运动,即logST-logS~Φ[(μ-σ22(T-t),σT-t]其中Φ(m,n)表示均值为m,标准差为n的正态分布。
(3)允许使用全部所得卖空衍生证券。
(4)无交易费用或税收。
(5)在衍生证券的有效期内没有红利支付。
(6)不存在无风险套利机会。
(7)证券交易是连续的。
(8)无风险利率是常数且对所有到期日都相同。
再假设投资者都是风险中性的,在风险中性世界里,股票的预期收益率μ等于无风险利率r,则由假设(2),得到
logST-logS~Φr-σ2(T-t),σT-t
由对数正态分布的特性,可知ST的期望值E(ST)表示为E(ST)=Ser(T-t)。对于不支付红利股票的欧式看涨期权,它在到期日的价值为CT=max{ST-K,0},期权当前价格C应是E(CT)以无风险利率贴现的结果,即C=e-r(T-t)E(CT)=e-r(T-t)E(max(ST-K,0))

⑷ 几何布朗运动的在金融中的应用

主条目:布莱克-舒尔斯模型
几何布朗运动在布莱克-舒尔斯定价模型被用来定性股票价格,因而也是最常用的描述股票价格的模型 。
使用几何布朗运动来描述股票价格的理由: 几何布朗运动的期望与随机过程的价格(股票价格)是独立的, 这与我们对现实市场的期望是相符的 。 几何布朗运动过程只考虑为正值的价格, 就像真实的股票价格。 几何布朗运动过程与我们在股票市场观察到的价格轨迹呈现了同样的“roughness” 。 几何布朗运动过程计算相对简单。. 然而,几何布朗运动并不完全现实,尤其存在一下缺陷: 在真实股票价格中波动随时间变化 (possiblystochastically), 但是在几何布朗运动中, 波动是不随时间变化的。 在真实股票价格中, 收益通常不服从正态分布 (真实股票收益有更高的峰度('fatter tails'), 代表了有可能形成更大的价格波动).

⑸ 几何布朗运动

问题一:几何布朗运动的均值函数怎么求 设布朗运动为B(t),布朗运动本身是正态分布,而且满足分布~N(0,t).几何布朗运动是W(t)=exp(B(t));这是一个很好的线性对应关系.所以均值就是(如图)
解这个简单的积分,就得到均值:exp(t/2) 顺便方差也求了吧:exp(2t)-exp(t)

问题二:请问如何用R语言做大量次数的几何布朗运动的模拟(参数μ,σ已知) 10分 这上网搜应该搜的到吧,比如这篇文章
股票价格行为关于几何布朗运动的模拟--基于中国上证综指的实证研究
,照着几何布朗运动的公式直接写代码应该就行了吧,代码逻辑都很清晰。
下面是照着这片文章模拟一次的代码,模拟多次的话,外面再套个循环应该就行了。然后再根据均方误差(一般用这个做准则的多)来挑最好的。
话说你的数据最好别是分钟或者3s切片数据,不然R这速度和内存够呛。
N 问题三:研究衍生品的时候为什么用几何布朗运动来模拟股票价格的运行轨迹 其实很简单,GBM(至少在一定程度上)符合人们对市场的观察。例如,直观的说,股票的价格看起来很像随机游走,再例如,股票价格不会为负,这样起码GBM比普通的布朗运动合适,因为后者是可以为负的。
再稍微复杂一点,对收益率做测试( S(t)/S(t-1) - 1)做测试,发现,哎居然还基本是个正态分布。收益率是正态的,股价就是GBM模型
总之,就是大家做了很多统计测试,发现假设成GBM还能很好的逼近真实数值,比较接近事实。所以就用这个。
其实将精确的数学模型应用到金融的时间非常短。最早是1952年的Markowitz portfolio selection. 那个其实就是一个简单的优化问题。后来的CAPM APT等诸多模型,也仅仅研究的是一系列证券,他们之间回报、收益率以及其他影响因素关系,没有涉及到对股价运动的描述。
第一次提出将股价是GBM应用在严格模型的是black-scholes model 。在这个模型中提出了若干个假设,其中一个就是股价是GBM的。

问题四:如何确定几何布朗运动模型中的参数 几何布朗运动只是模型,是 exp{Bt }这样的形式。你用模型什么事是关键,确定参数,在英文中叫calibration.
如果你是用 geometric brownian motion 去模型options, 这样的东西,是关系你的模型本身,比如black-scholes模型,关于它的参数calibration,这样的技术其实已经很完备,经典的金融数学教科书上都有的,其主要是根据市场上option的价格反推出模型的参数的。

⑹ 布朗运动是什么

布朗运动的特点是布朗粒子的位移分布和粒子数密度分布都满足扩散现象的规律。这说明在粒子浓度不均匀时发生的扩散现象,其本质是粒子的布朗运动产生了位移。在实际的技术应用中,扩散技术相当引人重视。 在半导体集成电路制造过程中,常用扩散方法将特定杂质引入半导体的预定部位,以形成器件或组件,使其具有设计的电路功能。扩散过程是在较高温度下进行的,杂质原子通过晶体中的缺陷(空位或填隙原子)而迁移。所以,作布朗运动的粒子不只有尺度在微米级的颗粒,也可能是原子或分子。布朗粒子的运动特点是具有随机性和偶然性。 在离子晶体中有正、负两种离子,同时存在正、负离子空位,正、负离子就是通过这些空位来扩散的。由于这种运动是随机的和无规则的,各个方向迁移的概率相同,因此,带电粒子的布朗运动不会产生电流。但是如果加上恒定电场,离子运动就会在随机的无规则的迁移之上加一项定向运动,从而能传导电流。 由于作热运动的大量介质分子(原子)对宏观小物体的无规碰撞导致随机运动引起的涨落,这种涨落以布朗运动为代表,所以布朗运动的实质是涨落。 电路中也有涨落现象,譬如电流、电压的涨落,经过线路放大,产生噪声。在导体中电子的热运动是无规则的,有外电场时,在平均电流的背景上,还有一部分涨落电流,它使电信号产生噪声。 在爱因斯坦关于布朗运动的论文发表之前,1900年法国数学家巴施里叶发表了论述股票的论文《投机理论》,认为根据当前的股价并不能确切知道下一时刻的股价,而只知道下一时刻股价的概率分布。他对股票价格的不规则波动构造了一个数学模型,这个模型与1905年爱因斯坦为布朗运动所建立的模型一致。后来,“股票价格比例变化是一种布朗运动”成为金融研究中的一个普遍假设。