A. 什么是 分子遗传学
http://www.ikepu.com/datebase/briefing/biology/molecular_genetics.htm分子遗传学是在分子水平上研究生物遗传和变异机制的遗传学分支学科。
分子遗传学主要研究基因的本质、基因的功能以及基因的变化等问题。
分子遗传学的早期研究都用微生物为材料,它的形成和发展与微生物遗传学和生物化学有密切关系。
分子遗传学是从微生物遗传学发展起来的,由于微生物便于培养,所以遗传学和重组DNA技术中,微生物遗传学的研究仍将占有重要的位置。
分子遗传学研究的方法,特别是重组DNA技术已经成为许多遗传学分支学科的重要研究方法。分子遗传学也已经渗入到许多生物学分支学科中,以分子遗传学为基础的遗传工程则正在发展成为一个新兴的工业生产领域。
更多内容请参阅分子遗传学一文
B. 遗传学与分子生物学的区别与联系
两个学科都是分子水平上的生物研究,分子遗传学侧重的是从分子水平对生物遗传规律和遗传现象的研究,而分子生物学是注重的生物在分子水平上的一些特征和现象 。
遗传学(Genetics)——研究生物的遗传与变异的科学,研究基因的结构、功能及其变异、传递和表达规律的学科。遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到DNA脱氧核糖核酸的复制甚至mRNA的转录,这些是分子遗传学研究的课题。
遗传学的研究范围包括遗传物质的本质、遗传物质的传递和遗传信息的实现三个方面。遗传物质的传递包括遗传物质的复制、染色体的行为、遗传规律和基因在群体中的数量变迁等。
分子生物学是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程。比如光合作用、发育的分子机制、神经活动的机理、癌的发生等。
C. 分子遗传学是什么时候建立的
19世纪末,已有实验证明DNA是生物界携带遗传信息的物质基础。1953年,沃森和克里克阐明了DNA分子的双螺旋模型,在遗传学研究历程中树立了划时代的里程碑,使人们得以用分子生物学的语言来解释自然界千变万化的遗传变异现象,开创了分子遗传学。
20世纪70年代以来,在分子遗传学理论研究日益深入的基础上,建立了重组DNA、核酸分子杂交、基因分离、克隆和表达、基因点突变、基因转移和核苷酸顺序分析等技术,并广泛地应用于人体基因结构与功能的研究,从而逐渐地从分子水平阐明了许多遗传病的发病机理,建立了基因诊断和产前诊断方法,并提出了遗传病的防治途径。与此同时,分子遗传学亦深入到免疫球蛋白生成、肿瘤发生等重要的生理和病理机制的探讨。基因工程的建立,标志着人们能按照自己的意图在活细胞内组织安排和表达基因,使其合成和分泌特定的蛋白质或多肽,以用于医疗和预防疾病。基因转移则为遗传病的治疗显示了光明的前景,而且尚可为自然界创造新物种和新品种。
D. 经典遗传学和分子遗传学关于基因的概念有何不同
经典遗传学认为基因是一个最小的单位,不能分割,既是结构单位,又是功能单位。
分子遗传学认为,基因是能够编码蛋白质的DNA序列。
E. 分子遗传学的发展简史
1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。
1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。
关于基因突变方面,早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。
美国遗传学家比德尔和美国生物化学家塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设,它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。
按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从DNA向蛋白质分子转移。前一问题是遗传密码问题,后—问题是蛋白质生物合成问题,这又涉及转录和翻译、信使核糖核酸(mRNA)、转移核糖核酸(tRNA)和核糖体的结构与功能的研究。这些分子遗传学的基本概念都是在20世纪50年代后期和60年代前期形成的。
分子遗传学的另一重要概念——基因调控在1960~1961年由法国遗传学家莫诺和雅各布提出。他们根据在大肠杆菌和噬菌体中的研究结果提出乳糖操纵子模型。接着在1964年,又由美国微生物和分子遗传学家亚诺夫斯基和英国分子遗传学家布伦纳等,分别证实了基因的核苷酸顺序和它所编码的蛋白质分子的氨基酸顺序之间存在着排列上的线性对应关系,从而充分证实了一个基因一种酶假设。此后真核生物的分子遗传学研究逐渐开展起来。
用遗传学方法可以得到一系列使某一种生命活动不能完成的突变型,例如不能合成某一种氨基酸的突变型、不能进行DNA复制的突变型、不能进行细胞分裂的突变型、不能完成某些发育过程的突变型、不能表现某种趋化行为的突变型等。不过许多这类突变型常是致死的,所以各种条件致死突变型,特别是温度敏感突变型常是分子遗传学研究的重要材料。
在得到一系列突变型以后,就可以对它们进行遗传学分析,了解这些突变型代表几个基因,各个基因在染色体上的位置,这就需要应用互补测验,包括基因精细结构分析等手段。
抽提、分离、纯化和测定等都是分子遗传学中的常用方法。在对生物大分子和细胞的超微结构的研究中还经常应用电子显微镜技术。对于分子遗传学研究特别有用的技术是顺序分析、分子杂交和重组DNA技术。
核酸和蛋白质是具有特异性结构的生物大分子,它们的生物学活性决定于它们的结构单元的排列顺序,因此常需要了解它们的这些顺序。如果没有这些顺序分析,则基因DNA和它所编码的蛋白质的线性对应关系便无从确证;没有核酸的顺序分析,则插入顺序或转座子两端的反向重复序列的结构和意义便无从认识,重叠基因也难以发现。
分子遗传学是从微生物遗传学发展起来的。虽然分子遗传学研究已逐渐转向真核生物方面,但是以原核生物为材料的分子遗传学研究还占很大的比重。此外,由于微生物便于培养,所以在分子遗传学和重组DNA技术中,微生物遗传学的研究仍将占有重要的位置。
分子遗传学方法还可以用来研究蛋白质的结构和功能。例如可以筛选得到一系列使某一蛋白质失去某一活性的突变型。应用基因精细结构分析可以测定这些突变位点在基因中的位置;另外通过顺序分析可以测定各个突变型中氨基酸的替代,从而判断蛋白质的哪一部分和特定的功能有关,以及什么氨基酸的替代影响这一功能等等。
生物进化的研究过去着眼于形态方面的演化,以后又逐渐注意到代谢功能方面的演变。自从分子遗传学发展以来又注意到DNA的演变、蛋白质的演变、遗传密码的演变以及遗传机构包括核糖体和tRNA等的演变。通过这些方面的研究,对于生物进化过程将会有更加本质性的了解。
分子遗传学也已经渗入到以个体为对象的生理学研究领域中去,特别是对免疫机制和激素的作用机制的研究。随着克隆选择学说的提出,目前已经确认动物体的每一个产生抗体的细胞只能产生一种或者少数几种抗体,而且已经证明这些细胞具有不同的基因型。这些基因型的鉴定和来源的探讨,以及免疫反应过程中特定克隆的选择和扩增机制等既是免疫遗传学也是分子遗传学研究的课题。
将雌性激素注射雄鸡,可以促使雄鸡的肝脏细胞合成卵黄蛋白。这一事实说明雄鸡和雌鸡一样,在肝脏细胞中具有卵黄蛋白的结构基因,激素的作用只在于激活这些结构基因。
激素作用机制的研究也属于分子遗传学范畴,属于基因调控的研究。个体发生过程中一般并没有基因型的变化,所以发生问题主要是基因调控问题,也属于分子遗传学研究范畴。
分子遗传学研究的方法,特别是重组DNA技术已经成为许多遗传学分支学科的重要研究方法。分子遗传学也已经渗入到许多生物学分支学科中,以分子遗传学为基础的遗传工程则正在发展成为一个新兴的工业生产领域。
F. 分子遗传学的介绍
分子遗传学是在分子水平上研究生物遗传和变异机制的遗传学分支学科。经典遗传学的研究课题主要是基因在亲代和子代之间的传递问题;分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。分子遗传学的早期研究都用微生物为材料,它的形成和发展与微生物遗传学和生物化学有密切关系。
G. 分子遗传学的中心法则是什么
中心法则是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。
分子生物学的核心原理是阐述一系列信息的逐字传递。指出遗传信息不能从蛋白质传递到蛋白质或核酸。脱氧核糖核酸(DNA)或核糖核酸(RNA)分子中所含的功能性核苷酸序列称为遗传信息。遗传信息传递包括核酸分子间转移、核酸分子间转移和蛋白质分子间转移。
(7)分子遗传学扩展阅读
中心法则对探索生命现象的本质和普遍规律起着重要作用,极大地促进了现代生物学的发展,是现代生物学的理论基石,为生物学基础理论的统一指明了方向。它在发展过程中占有重要的地位。遗传物质可以是DNA,细胞的遗传物质都是DNA,只有一些病毒的遗传物质是RNA。
双链DNA可以成为宿主细胞基因组的一部分,并同宿主细胞的基因组一起传递给子细胞。在反转录酶催化下,RNA分子产生与其序列互补的DNA分子。
H. 分子遗传学的证据,例如
分子遗传学是在分子水平上研究生物遗传和变异机制的遗传学分支学科。经典遗传学的研究课题主要是基因在亲代和子代之间的传递问题;分子遗传学则主要研究基因的本质、基因的功能以及基因的变化等问题。分子遗传学的早期研究都用微生物为材料,它的形成和发展与微生物遗传学和生物化学有密切关系。
1、DNA和RNA的提取:人体组织细胞在含有SDS的溶液中,用蛋白酶K消化分解蛋白质,然后用酚和氯仿抽提,用乙醇沉淀DNA。也可用离子交换树脂快速提取DNA。
2、Southern印迹杂交分析:这是一种常用的DNA分子遗传学研究技术,由英国科学家Southem发明而命名的。可用于测定特异基因内及周围的多态性或其突变点。可检测由突变、插入或缺失所引起的基因异常。
3、DNA多态性:DNA区域中等位基因存在两种或两种以上形式,对基因功能没有影响,称为多态性。DNA序列中大约有1/100—200的碱基存在多态现象。根据人类DNA的多态性可以检测人体细胞中遗传因素的微细变化。
4、多聚酶链反应(PCR):一种通过酶作用,在体外迅速合成DNA序列的方法。可在体外迅速而大量地扩增被选定的一定长度的DNA序列。PCR的产物纯度较高,可直接用电泳法显示和回收。这是分子生物学中的一项突破性技术。
5、DNA序列测定:测定DNA序列有两种方法:一种是DNA的化学降解法,另一种是DNA合成法。两种方法都有一系列DNA分子生成,这些DNA分子的长度仅差一个碱基,可经聚丙烯凝胶电泳分离,在凝胶上形成带梯。
6、DNA芯片测定:标记的cDNA探针与定点于固相表面呈几何组列分布的寡核苷酸产生高度专一的杂交,可以进行不同细胞群中个别基因表达的评估,以及基因功能群的分析。预期DNA芯片技术的进一步发展和扩大应用,会对遗传学异常之快速诊断和治疗效果的判别产生积极的变革作用。
I. 介绍分子遗传学的书谁写的最好籍
一般用的教材是《遗传学》(第二版)戴灼华,王亚馥,粟翼玟主编,高等教育出版社。
刘祖洞的《遗传学》中关于遗传学计算分析得很透彻,作为遗传学上册的参考书。
J. 试述分子遗传学的发展历史
分子遗传学发展简史
1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。
1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。
关于基因突变方面,早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。
美国遗传学家比德尔和美国生物化学家塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设,它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。
按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从DNA向蛋白质分子转移。前一问题是遗传密码问题,后—问题是蛋白质生物合成问题,这又涉及转录和翻译、信使核糖核酸(mRNA)、转移核糖核酸(tRNA)和核糖体的结构与功能的研究。这些分子遗传学的基本概念都是在20世纪50年代后期和60年代前期形成的。
分子遗传学的另一重要概念——基因调控在1960~1961年由法国遗传学家莫诺和雅各布提出。他们根据在大肠杆菌和噬菌体中的研究结果提出乳糖操纵子模型。接着在1964年,又由美国微生物和分子遗传学家亚诺夫斯基和英国分子遗传学家布伦纳等,分别证实了基因的核苷酸顺序和它所编码的蛋白质分子的氨基酸顺序之间存在着排列上的线性对应关系,从而充分证实了一个基因一种酶假设。此后真核生物的分子遗传学研究逐渐开展起来。