当前位置:首页 » 股票资讯 » 电梯悖论
扩展阅读
股票和基金先学哪个 2024-11-20 20:57:22

电梯悖论

发布时间: 2021-05-28 18:31:27

㈠ 什麽是悖论

悖论一览
1. 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?
如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。
2. 芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
3. 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”
如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。
所以怎样也难以自圆其说,这就是著名的说谎者悖论。
公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是真的。”同上,这又是难以自圆其说!
说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。”
又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。
4. 跟无限相关的悖论:
{1,2,3,4,5,…}是自然数集:
{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?
5. 伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么?
6. 预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”
你能说出为什么这场考试无法进行吗?
7. 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”
这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦?
8. 硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗?

罗素悖论(理发师悖论)让人们发现了数学这座辉煌大厦的基础部分存在的一条巨大的裂缝。于是,数学家们开始探索数学结论在什么情况下才具有真理性,数学推理在什么情况下才是有效的……,从而产生了一门新的数学分支——数学基础论。
9. 谷堆悖论:显然,1粒谷子不是堆;
如果1粒谷子不是堆,那么2粒谷子也不是堆;
如果2粒谷子不是堆,那么3粒谷子也不是堆;
……
如果99999粒谷子不是堆,那么100000粒谷子也不是堆;
……

10. 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢?因此,1000000粒谷子不是堆。

㈡ 数学中有哪些著名的悖论

“悖论”也可叫“逆论”,或“反论”,这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。悖论有三种主要形式。
1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。
3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。
悖论是强烈违反我们直觉的问题。在这里,悖论只是直接导致彼此矛盾的结果,就像证明2+2又等于4,又不等于4一样。逻辑悖论是“不可解”的,除非能找到一种方法来完全消除这种恶性的矛盾。
尽管从古希腊起到今天,逻辑悖论一直人们带来很大乐趣,可是最伟大的数学家都总是极严肃地对待它。在发展现代逻辑学和集合论中一些巨大进展正是努力解决经典悖论的直接结果。 克里特人伊壁孟德 伊:所有的克里特人都是撒谎者。
M:他说的是真的吗?如果他说的是实话,那么克里特人都是撒谎者,而伊壁孟德是克里特人,他必然说了假话。他撒谎了吗?如果他确实撒了谎,那么克里特人就都不是说谎的人,因而伊壁孟德也必然说了真话。他怎么会既撒谎,同时又说真话呢?伊壁孟德是个半传奇式的希腊人,他在公元前6世纪住在希腊。有一个神话说他曾经一下子睡了57年。
关于他的上面那段文字,如果我们假定撒谎者总是说假话,不撒谎的人总是说真话,那么就会出现逻辑的矛盾。按此假定,“所有的克里特人都是撒谎者”这句话不可能是真话,因为这说明伊壁孟德既是撒谎的人,因此他说的就不是真话。可是这又意味着克里特人是说真话的,那么伊壁孟德说的话也必定是真话,因此上面引的那句话也不可能是假话。
古希腊人曾为此大伤脑筋,怎么会一句话看上去完美无缺,自身没有矛盾,却既是真话又是假话呢!一个斯多噶派哲学家,克利西帕斯写了六篇关于“说谎者悖论”的论文,没有一篇成功。有一位希腊诗人叫菲勒特斯,他的身体十分瘦弱,据说他的鞋中常带着铅以免他被大风吹跑,他常常担心自己会因思索这些悖论而过早地丧命。在《新约》中,圣·保罗在他给占塔斯的书信中也引述过这段悖论。说谎者悖论

M:我们陷入了著名的说谎者悖论之中。下面是它的最简单的形式。
甲:这句话是错的。
M:上面这个句子对吗?如果是对的,这句话就是错的!如果这句话是错的,那这个句子就对了!像这样矛盾的说法比你所能想到的还要普遍得多。
为什么这类悖论采用上述形式表达(即一句话谈的正是它本身)就变得清晰起来?这是因为它消除了说谎者是否总是说谎,不说谎者总是说真话。
这一悖论作这类变化是无穷的。例如,罗素曾经说,他相信哲学家乔治·摩尔平生只有一次撒谎,就是当某人问他:是否他总是说真话时,摩尔想了一会儿,就说:“不是。”
再变化一下:这本小书中所有的说明都是可靠的,只有这一节中关于说谎者悖论的评述部分的第三自然段(即现在的这一段)除外。
我们还可以作出其他变化吗?柏拉图:下面苏格拉底说的话是假的。
苏格拉底:柏拉图说了真话!
在一张白卡片的一面写:
这张卡片背面的句子是真的。
该卡片的背面写的是:
这张卡片背面的句子是假的
不管你让哪一句话是真的,另一句总与之矛盾。两句话谈的都不是它本身,但放到一起,仍会出现说谎者悖论 古希腊人想出了很多关于时间和运动的悖论.基诺悖论是其中最为著名的一个。
甲:在我达到终点线之前,我必须经过中点。然后.我必须跑到3/4处,它是剩下距离的—半。
甲:而在我跑完最后的1/4这段路之前,我必须跑到这段路的中点。因为这些中点是没有止境的,我将根本不能达到终点。
M:假定跑步人每跑一半要一分钟。绘出的时间—距离关系图表明他是如何越来越接近终点,而绝不会达到终点的。他的论据对吗?
M:不对,因为跑步人不是每跑半截都用1分钟。每跑一半所花的时间都是前一段时间的一半。他只要两分钟就可以到达终点,只不过他须通过无穷多个中点而已。
M:基诺设计出一条关于阿基里斯的悖论。这个战士想要捉住一公里外的一只海龟。当阿基里斯跑到海龟原来所在点时,海龟已向前爬了10米。但是当阿基里斯跑到10米处时,海龟又爬到前面去了。
海龟:你别想抓住我,老朋友。只要你一到我原先所在的地方,我就已经跑到前面一截;了,那怕这个距离比头发丝还小。
M:基诺当然知道阿基里斯能够捉住海龟。他不过是显浅的说明,在把时间和空间看成是由一连串的离散点组成,就像一串念珠前后相连那样时,会引起怎样令人迷惑的结果。理发师悖论著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。谁给这位理发师刮脸呢?如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!伯特纳德·罗素提出这个悖论,为的是把他发现的关于集合的一个著名悖论用故事通俗地表述出来。某些集合看起来是它自己的元素。例如,所有不是苹果的东西的集合、它本身就不是苹果,所以它必然是此集合自身的元素。现在来考虑一个由一切不是它本身的元案的集合组成的集合。这个集合是它本身的元素吗?无论你作何回答,你都自相矛盾。在逻辑学历史上最富戏剧性的危机之一就与这条逆论有关。德国的著名逻辑学家哥特洛伯·弗里兹写完了他最重要的著作《算法基础》第二卷,他认为他在这本书中确立了一套严密的集合论,它可作为整个数学的基础。1902年,当该书付印时,他收到了罗索的信,他得知上面那条悖论。弗里兹的集合论容许由一切不是它自身的元素的集合构成的集合。正如罗素在信中澄清的,这个表面上结构完美的集合却是自相矛盾的。弗里兹在收到罗素的信后,只来得及插入一个简短的附言:“一个科学家所遇到的最不合心意的事,莫过于是在他的工作即将结束时使其基础崩溃了,我把罗素的来信发表如下……”据说,弗里兹使用的词“不合心意”(undesirable)是数学史上最词不达意的说法了。 无穷的倒退问题:鸡和鸡蛋,到底先有哪个?
M:先有鸡吗?不,它必须从鸡蛋里孵出来,那末先有鸡蛋?不,它必须由鸡生下。好!你陷入了无穷的倒退之中。
鸡和鸡蛋这个古老的问题是逻辑学家称为“无穷倒退”的最普通的例子。老人牌麦片往往装在一个盒中,上面的画是一个老人举着一盒麦片,这个盒上也有一张画有一个老人举着一盒麦片的小画片。自然,那个小盒上又有同样的画片,如此以往就像一个套一个的中国盒子的无穷连环套一样。《科学美国人》1965年4月号有一个封面,画着—个人眼中反映着这本杂志。你可以看到在反映出的杂志上,也有一个小一点的眼睛,反映出一本更小的杂志,自然这样一直小下去。在理发店里,对面的墙上有很多相向的镜子,人们在这些镜子中可以看到反照出的无穷倒退。
在幻想作品中有类似的倒退。菲利浦·夸尔斯是阿尔道斯·赫克斯勒的小说《点计数器点》中的人物:他是一个作家,正在写一本小说,是关于一个作家正在写一个作家在写小说的小说……。在安德烈·贾德的小说《伪造品》中,在卡明的剧作《他》中,在诺曼·迈勒的《笔记》这类短篇小说中,都有类似的倒退。
乔纳·斯威夫特在一首诗中写了一段关于跳蚤的无穷倒退,数学家奥古斯塔斯·德 摩根把它改写为:大跳蚤有小跳蚤,在它们的背上咬,小跳蚤又有小跳蚤,如此下去,没完没了。大跳蚤倒了个儿——变小,上面还有大跳蚤,一个上面有一个,总也找不到,谁的辈数老。
在艺术、文学、数学和逻辑方面无穷倒退的更多实例可参见《科学美国人》编的马丁·加德勒的第六本数学游戏。唐·吉诃德悖论小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题:你来这里做什么?如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
一天,有个旅游者回答——
旅游者:我来这里是要被绞死。
M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王才说:不管我做出什么决定,都肯定要破坏这条法律。我们还是宽大为怀算了,让这个人自由吧。
这段绞人的悖论出在《唐·吉诃德》第二卷的第51章。吉诃德的仆人桑乔·潘萨成了一个小岛的统治者,在那里他起誓在这个国家要奉行这条奇怪的关于旅游者的法律。当那个旅游者被带到他面前时,他用慈悲和常识做出了对这个人的裁决。
这条悖论实质上和鳄鱼悖论是同样的。旅游者的回答使小岛的君王无法执行这条法律而不自相矛盾。
鳄鱼和小孩希腊哲学家喜欢讲一个鳄鱼的故事。一条鳄鱼从母亲手中抢走了一个小孩。
鳄鱼:我会不会吃掉你的孩子?答对了,我就把孩子不加伤害地还给你。
母亲:呵、呵!你是要吃掉我的孩子的。
鳄鱼:呣……。我怎么办呢?如果我把孩子交还你,你就说错了。我应该吃掉他。
鳄鱼碰到了难题。它把孩子既要吃掉,同时又得交还给孩子的母亲。
鳄鱼:好了,这样我就不把他交给你了。
母亲:可是你必须交给我。如果你吃了我的孩子,我就说对了,你就得把他交回给我。
拙劣的鳄鱼懵了,结果把孩子交回了母亲,母亲一把拽住孩子,跑掉了。
鳄鱼;他妈的!要是她说我要给回她孩子,我就可美餐一顿了。

㈢ 著名的悖论有哪些

悖论一览
1.
理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发?
如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。
2.
芝诺悖论--阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。
3.
说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”
如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话--所有克里特人所说的每一句话都是谎话--相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。
所以怎样也难以自圆其说,这就是著名的说谎者悖论。
公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是真的。”同上,这又是难以自圆其说!
说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。”
又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。
4.
跟无限相关的悖论:
{1,2,3,4,5,…}是自然数集:
{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?
5.
伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么?
6.
预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”
你能说出为什么这场考试无法进行吗?
7.
电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”
这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦?
8.
硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗?
罗素悖论(理发师悖论)让人们发现了数学这座辉煌大厦的基础部分存在的一条巨大的裂缝。于是,数学家们开始探索数学结论在什么情况下才具有真理性,数学推理在什么情况下才是有效的……,从而产生了一门新的数学分支--数学基础论。
9.
谷堆悖论:显然,1粒谷子不是堆;
如果1粒谷子不是堆,那么2粒谷子也不是堆;
如果2粒谷子不是堆,那么3粒谷子也不是堆;
……
如果99999粒谷子不是堆,那么100000粒谷子也不是堆;
……
10.
宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢?因此,1000000粒谷子不是堆。

㈣ 经典的饽论例子

NO.1
说谎者悖论(1iar paradox or Epimenides’ paradox)
最古老的语义悖论。公元前6世纪古希腊哲学家伊壁孟德
所创的四个悖论之一。是关于“我正在撒谎”的悖论。具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。

NO.2
伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖论。由古希腊斯多亚学派提出。它的基本内容是:伊勒克特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列斯特是她的哥哥.但她并不认识站在她面前的这个男人。
写成一个推理.即:
伊勒克持拉不知道站在她面前的这个人是她的哥哥。
伊勒克持拉知道奥列期特是她的哥哥。
站在她面前的人是奥列期特。
所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。

NO.3
M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着:
告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
M:谁给这位理发师刮脸呢?
M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!

NO.4
唐·吉诃德悖论
M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。
问,你来这里做什么?
M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
M:一天,有个旅游者回答——
旅游者:我来这里是要被绞死。
M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。

NO.5
在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。

NO.6
芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。

NO.7
跟无限相关的悖论:
{1,2,3,4,5,…}是自然数集:
{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?

NO.8
伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么?

NO.9
预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”
你能说出为什么这场考试无法进行吗?

NO.10
电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”
这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦?

NO.11
硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗?

NO.12
罗素悖论(理发师悖论)让人们发现了数学这座辉煌大厦的基础部分存在的一条巨大的裂缝。于是,数学家们开始探索数学结论在什么情况下才具有真理性,数学推理在什么情况下才是有效的……,从而产生了一门新的数学分支——数学基础论。

NO.13
谷堆悖论:显然,1粒谷子不是堆;
如果1粒谷子不是堆,那么2粒谷子也不是堆;
如果2粒谷子不是堆,那么3粒谷子也不是堆;
……
如果99999粒谷子不是堆,那么100000粒谷子也不是堆;
……

NO.14

10. 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢?

㈤ 哲学上有哪些著名的悖论

1. 理发师悖论(罗素悖论) 2. 芝诺悖论——阿基里斯与乌龟 3. 说谎者悖论4. 跟无限相关的悖论 5. 伽利略悖论 6. 预料不到的考试的悖论7. 电梯悖论 8. 硬币悖论 9. 谷堆悖论 10. 宝塔悖论

㈥ 数学中有哪些著名的悖论求解

理发师悖论 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。 说谎者悖论 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。” 如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。 公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。” 又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 跟无限相关的悖论 跟无限相关的悖论: {1,2,3,4,5,…}是自然数集: {1,4,9,16,25,…}是自然数平方的数集。 这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗? 伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么? 预料不到的考试的悖论 预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。” 你能说出为什么这场考试无法进行吗? 电梯悖论 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!” 这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦? 硬币悖论 硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗? 谷堆悖论 谷堆悖论:显然,1粒谷子不是堆; 如果1粒谷子不是堆,那么2粒谷子也不是堆; 如果2粒谷子不是堆,那么3粒谷子也不是堆; …… 如果99999粒谷子不是堆,那么100000粒谷子也不是堆; …… 如果1粒谷子落地不能形成谷堆,2粒谷子落地不能形成谷堆,3粒谷子落地也不能形成谷堆,依此类推,无论多少粒谷子落地都不能形成谷堆。这就是令整个古希腊震惊一时的谷堆悖论。 从真实的前提出发,用可以接受的推理,但结论则是明显错误的。它说明定义“堆”缺少明确的边界。它不同于三段论式的多前提推理,在一个前提的连续积累中形成悖论。从没有堆到有堆中间没有一个明确的界限,解决它的办法就是引进一个模糊的“类”。 这是连锁(Sorites)悖论中的一个例子,归功于古希腊人Eubulides,后来的怀疑论者不承认它是知识。“Soros”在希腊语里就是“堆”的意思。最初是一个游戏:你可以把1粒谷子说成是堆吗?不能;你可以把2粒谷子说成是堆吗?不能;你可以把3粒谷子说成是堆吗?不能。但是你迟早会承认一个谷堆的存在,你从哪里区分他们? 宝塔悖论 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。那么到底抽多少块砖塔才会塌呢? 鸡与蛋问题 世界上是先有鸡还是先有蛋? ○当然是先有鸡,只是刚开始它不是鸡,而是别的动物,后来它们的繁衍方式发生了变化,——成为了卵生,所以才有了蛋。 ○最早没有卵生动物,很多生物还是无性繁殖分裂的,后来慢慢进化成卵生和哺乳动物,所以按道理应该先进化成生物本体才可能有蛋的由来。

㈦ 数学中有哪些著名的悖论

罗素悖论,贝克莱悖论, 芝诺悖论,说谎者悖论,伽利略悖论,电梯悖论,硬币悖论,谷堆悖论,宝塔悖论

㈧ 数学悖论的相关悖论

{1,2,3,4,5,…}是自然数集:
{1,4,9,16,25,…}是自然数平方的数集。
这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗? 一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”
你能说出为什么这场考试无法进行吗? 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”
这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦? 谷堆悖论:显然,1粒谷子不是堆;
如果1粒谷子不是堆,那么2粒谷子也不是堆;
如果2粒谷子不是堆,那么3粒谷子也不是堆;
……
如果99999粒谷子不是堆,那么100000粒谷子也不是堆;
……
如果1粒谷子落地不能形成谷堆,2粒谷子落地不能形成谷堆,3粒谷子落地也不能形成谷堆,依此类推,无论多少粒谷子落地都不能形成谷堆。这就是令整个古希腊震惊一时的谷堆悖论。
从真实的前提出发,用可以接受的推理,但结论则是明显错误的。它说明定义“堆”缺少明确的边界。它不同于三段论式的多前提推理,在一个前提的连续积累中形成悖论。从没有堆到有堆中间没有一个明确的界限,解决它的办法就是引进一个模糊的“类”。
这是连锁(Sorites)悖论中的一个例子,归功于古希腊人Eubulides,后来的怀疑论者不承认它是知识。“Soros”在希腊语里就是“堆”的意思。